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PREFACE.

THIS book is intended as a brief manual for Engineer-

ing Students, and treats chiefly of those portions of the

subject of the Kinematics of Machines which are likely to

be of assistance in the study of the Dynamics of Machines

and in work in Machine Design.

The author wishes to thank his friends and colleagues,

Dr. E. G. Coker and Mr. H. M. Jaquays, for their kindly

criticism and for their help in revision of the proof - sheets.

Many earlier works have been consulted in the prepara-

tion of this volume
;
wherever possible they are named in

the text or in foot-notes. Professors John H. Barr and

C. W. MacCord have courteously permitted the use of cer-

tain of their diagrams, and the author is indebted to

The American Stoker Company, The Brown and Sharpe

Manufacturing Company, and The Link Belt Engineering

Company for the use of figures and information.

MONTREAL, November 1902.
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NOTE TO THE SECOND EDITION.

IN this edition a collection of problems, questions, and

exercises has been added. These have been tested in

actual teaching work and it is hoped that they will con-

siderably increase the usefulness of the work as a text-

book.

Thanks are due to the author's colleague, Professor

Charles M. McKergow, who has suggested a number of the

exercises, and has kindly assisted in correcting numerical

and other errors in the original impression.
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KINEMATICS OF MACHINES.

CHAPTER I.

INTRODUCTORY CONSIDERATIONS.

i. Study of Machines. In general the study of a

Machine involves problems of three distinct kinds. We
may first of all consider from a geometrical point of view

the motion of any part of the machine with reference to

any other part, without taking account of any of the forces

acting on such parts. Or, the action of the forces impressed

on the parts of the machine, and of the forces due to its

own inertia or to the weight of its parts, may be dealt with,

and the resulting transformations of energy may be deter-

mined. A third branch of the theory of machines treats

of the action of these loads and forces in producing stresses

and strains in the materials employed in the construction

of the machine, and discusses the sizes, forms, and pro-

portions of the various parts which are required either to

insure proper strength while avoiding waste of material,

or to make the machine capable of doing the work for which

it is being designed.

The science dealing with the first-named class of problem

is termed the Kinematics of Machines, which we may define

as being that science which treats of the relative motion

of the parts of machines, without regard to the forces pro-

ducing such motions, or to the stresses and strains produced

by such forces.



2 KINEMATICS OF MACHINES.

With this limitation, in the case of almost all bodies

forming portions of machines, it is possible to neglect any
deformation they may undergo in working, and in studying
the Kinematics of Machines we may at once apply to

machine problems the results obtained by the study of

the motion of rigid bodies. Important exceptions will

present themselves to the reader's mind; for example,

ropes, belts, and springs cannot be considered kinematically
as being rigid, and many mechanical contrivances involve

the use of liquid or gaseous material. Such cases as these

will be considered later.

By the term Machine we may understand a combina-

tion or arrangement of certain portions of resistant material,

the relative motions of which are controlled in such a way
that some form of available energy is transmitted from

place to place, or is transformed into another desired kind.

This definition includes under the head of Machines all

contrivances which have for their object the transformation

or transmission of energy, or the performance of some par-

ticular kind of work, and further implies that a single

.portion of material is not considered as a machine. The
so-called simple machines in every case involve the idea of

more than one piece of material.

A combination or arrangement of portions of material by
means of which forces are transmitted or loads are carried

without sensible relative motions of the component parts
is called a 'Structure.

The term Mechanism is often used as an equivalent for

the word Machine. It is, however, preferable to restrict

its use somewhat, and to employ the word to denote simply
a combination of pieces of material having definite relative

motions, one of the pieces being regarded as fixed in space.

Such a mechanism often represents kinematically some
actual machine which has the same number of parts as the

mechanism with the same relative motions. The essential

difference is that in the case of a machine such parts have



INTRODUCTORY CONSIDERATIONS. 3

to transmit or transform energy, and are proportioned and
formed for this end, while in a mechanism the relative motion

of the parts only is considered. We may look upon a

mechanism, then, as being the ideal or kinematic form of a

machine, and our work will be much simplified in most

cases if we consider for kinematic purposes the mechanism
instead of the machine. Such a substitution is also of the

greatest service in the comparison and classification of

machines
;
we shall find in this way that machines, at first

sight quite distinct, are really related, inasmuch as their

representative mechanisms consist of the same number of

parts having similar relative motions, and only differing

because a different piece is considered to be fixed in each

case.

2. Constrained Motion. On further consideration of the

nature of a Machine as defined above, it will be noted that

each part of the machine must have certain definite motions

relatively to any other part, such definite motions being

repeated again and again during the working of the machine.

Thus the motion of a machine-part must be completely

constrained, that is, the part must be free to move only in

the manner desired to produce the required transformation

of energy, and for it other unnecessary motions must be

rendered impossible. Constrained motion of a body takes

place when every point in the body is made to describe some

definite and prescribed path. This constraint is effected

in general by so forming and connecting the parts that all

forces tending to disturb their constrained motion are

balanced by stresses set up in the parts themselves. It is

assumed, of course, that the machine remains uninjured

by such stresses.

3. Pairs of Elements. The nature of the connection

between the parts of a machine will be best understood by
taking a simple case and discussing the way in which some

form of constrained relative motion of two bodies may be

obtained. Suppose, for example, that a piece of material,
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which we may call a, has to be capable of a motion of

translation along a straight line, with reference to another

piece, 6, and is to have no other relative motion whatever.

This must be accomplished by giving these pieces suitable

forms. Such an arrangement as that sketched in Fig. i

FIG. i.

would not meet the case, for, although a executes the re-

quired movement so long as it remains in the groove formed

in b and does not rotate on its axis in the groove, the forms

shown do not prevent a leaving the groove in b or rotating

in that groove.

It will be found that to attain the desired object some

such forms as shown in Fig. 2 must be adopted, and that if

this is done, the only possible motion of a relatively to b is

that of simple translation along a straight line parallel to

the edge of the groove or slot in 6. The figure will recall

to the reader the appearance of a steam-engine cross-head

and its guides, a pair of bodies which have indeed the same

relative motion as that described above.

We shall refer to a pair of bodies so formed as to permit
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of partly or wholly constrained relative motion while in con-

tact as a pair of elements, the elements being really the sur-

faces of contact, or working surfaces, of the pair of bodies.

Such pairs are distinguished as being (a) higher pairs and

(b) lower pairs. Lower pairs may be defined as those in

which "the forms of the elements are geometrically iden-

tical, the one being solid or full and the other hollow or

open" (Reuleaux). This definition involves the idea of

surface contact to produce the required partial or complete

constraint, while in the case of higher pairs constraint is

produced by contact at a sufficient number of lines or

FIG. 2.

points. Mechanically, lower pairing in machinery is pref-

erable, wherever possible. The reason for this is that

wear takes place much more rapidly in a case where line

or point contact occurs than in the case where surfaces of

considerable extent are touching, other conditions being
the same.

A pair of elements whose relative motion is completely
constrained is said to be closed. Thus such a pair as is

shown in Fig. i is not closed, while that of Fig. 2 is com-

pletely closed; for, as has been already pointed out, the

only possible relative motion is one of pure translation in

a straight line.
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The nature of the relative motion of two bodies can only
be defined when one of them is considered as being fixed.

In the case of a pair of elements ab, a being fixed while b

moves, we may have the same relative motion of a and b

as when b is fixed while a moves, but the pair is said to be

inverted, that is, the second element is fixed instead of the

first. Examples of such inversion of pairs frequently occur

in considering actual machines, and it is important to remem-
ber that, while inversion of a pair may cause 'no alteration

of the relative motion of the elements themselves, it may, and

generally does, alter their motion relatively to other bodies.

4. Links and Chains. In studying any simple mechan-

ism or machine, we find that each piece of material carries,

or has formed upon it, one element of each of two or more

pairs. Take for example the cross-head of a steam-engine ;

in addition to the surface winch pairs with the guide bar or

bars, the block has a cylindrical surface pairing with a similar

one on the small end of the connecting-rod,and it thus carries,

or links together, two elements belonging to two different

pairs.

In general, then, a part of a machine forms a kinematic

link connecting two or more elements, belonging respectively

to two or more pairs, and the whole arrangement or com-

bination of such links is known as a kinematic chain. This

may or may not have such kinematic properties as to make
it available as a mechanism; for we can easily imagine a

kinematic chain which does not comply with our definition

of a mechanism when one link is fixed. Consider the case

of a linkwork formed of five bars, a b c d e, jointed at the

angles as shown in Fig. 3. Suppose a to be fixed, then the

motion of c or d relatively to a is not constrained, and such

a chain, therefore, is not a mechanism as we have defined it.

It is most important to note, with regard to this point,

that the motion of c with respect to b is constrained, i.e., c

can only have one motion with regard to b, that of turning
about the axis of the joint connecting them, whereas with



INTRODUCTORY CONSIDERATIONS. 7

respect to a, c can be made to move in any number of dif-

ferent ways, depending in this case on the force or forces

applied to the different bars. The motion of c with respect

to a is therefore not constrained. This fact is illustrated

in Fig. 3, where it is seen that if the links b and e take up
the positions b

f and e', c and d may be either at c' and d f

,
or

at c" and d" . Such a kinematic chain as this is said not

to be closed, and we define a closed chain as a series of links

FIG. 3.

so connected that each of them has only one definite motion

relatively to any other link. Thus if one link be fixed, the

motion of any other can be determined. A closed chain

having one link fixed is then equivalent to a mechanism.

The various ways in which closure is obtained in pairs

and in chains will be discussed later.

A chain of which each link carries two elements is

termed a simple chain, for a link cannot have a less number
of elements than two. If, however, any link or links have

three or more elements respectively belonging to three or

more pairs, the chain is said to be compound. In some

ways compound chains present more difficulties than do

simple chains, but the kinematics of both kinds may be
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studied by exactly the same methods. Fig. 4 shows a

closed compound chain, which has been suggested as a

straight-line motion. It will be seen that the link a is

fixed, and that b carries one element of each of the pairs

FIG. 4.

ba, bd, be, while c has upon it one element of each of the

pairs ca, cd, cf.

It is worth while noticing that if the link d were removed
the chain would no longer be a closed one. The particular

mechanism shown in Fig. 4 will be again referred to.*

In the last two figures the links have been represented

by straight bars. From a kinematic point of view, how-

ever, the mechanisms or chains would have been unchanged
if the form of the bars had been altered in any way, always

supposing that the axes of the joints remain parallel and at

the same distance apart, and that the forms of the links

are not such as to cause fouling or interference while the

mechanism is in motion. It is evident that these re-

marks apply generally, and we may say that, as a rule,

* See Fig. 59.
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the form or shape of a link in a chain is not of importance
in kinematics, so long as the form adopted does not render

impossible any portion of the required movement of the

link. Questions of form and shape fall within the province
of the science of Machine Design.

We have already seen that in discussing whether a

kinematic chain is or is not equivalent to a mechanism,
we suppose one link to be fixed, and we then proceed to

determine whether the chain is closed or not
;
a closed chain

having one link fixed being regarded as a mechanism.

The choice of the fixed link is left open, and by selecting

different links of a kinematic chain different mechanisms are

generally obtained. Thus, in general, from a given kine-

matic chain we may derive as many mechanisms as the

chain has links. These mechanisms are called the inver-

sions of the original chain, and, as in the case of the inver-

sion of pairs, the exchange of one fixed link for another is

known as the inversion of the chain. Many examples of

such inversion will be met with in the following chapters.

5. Motion and Position in a Plane. Kinematics is sim-

ply the science of pure motion, as is indeed indicated by its

name (from Kivr^a, motion), first suggested by Ampere.
Some of the simpler propositions of pure kinematics will be

given here before explaining their application in the special

case of the kinematics of machines. They are based on

geometrical principles, since they deal with the ideas of

position and space. But it will be at once seen that the

introduction of the ideas of time, and consequently of veloc-

ity and acceleration, extends the scope of the science of

kinematics considerably beyond the limits of pure geometry.
Two chief classes of problems arise, the first dealing with

the position and motion of a particle, and the second treat-

ing of similar questions relating to rigid bodies. The motion

of non-rigid bodies is of course of a far more complex nature,

and only a few elementary cases will fall within the limits

of this work. Indeed the motion of such bodies cannot be
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investigated apart from the forces acting on them, and its

consideration falls within the province of Kinetics, rather

than within that of Kinematics.

Motion is defined as change of position, and is known

if the position of the point or body considered is known for

every instant. The position of a point or of a body can only

be defined in relation to another point or body (as the case

may be) whose position is fixed, or, in other words, whose

change of position is neglected. Position (and therefore

motion) is then purely relative. When we speak of a moun-

tain being ten thousand feet in height, we are referring the

position of its summit to an arbitrary datum surface, that

of mean sea-level. In stating the position of a point or

body (a body being equivalent to a system of points) we
must then refer to some other point or body, and in consid-

ering the motion of a point or system of points, such motion

can only be imagined with reference to a second point or

system of points, supposed to be fixed.

In the case of plane motion, this reference system is

usually taken to be the surface on which is drawn the dia-

gram representing the motion of the body considered. In

order to define the plane motion of a plane figure, with

regard to a plane, it is sufficient to know the motion of any
two points in the figure with reference to the plane. The

truth of this will be seen by considering that if the motion

of one point only were known, we should still be ignorant

of any rotation the figure might have about an axis perpen-
dicular to the plane. The knowledge of another point's

motion, however, defines such rotation.

In most cases, problems arising in the kinematic study
of machines are found to involve the consideration of Plane

Motion only.

A rigid body having Plane Motion moves in such a way
that all planes originally parallel to a certain fixed plane

(that of motion) remain parallel thereto during the whole

movement of the body, while any point whatever in the body
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moves in a plane either parallel to or coincident with the

plane of motion.

A body moving in this manner will in fact have no
motion of translation in a direction normal to the plane of

motion, and the position of the body with respect to the

plane of motion will agree exactly with the position of its

projection on the plane of motion. Hence in considering

the plane motion of rigid bodies, we need deal only with the

kinematics of plane figures, and all propositions relating to

the plane motion of plane figures will be applicable to that

of rigid bodies.

It is not, in general, so necessary to trace out the whole

motion of a body as to know what is its instantaneous

motion at some given stage of its movement. By this term

is meant the change of position executed by the body in a

very small period of time. The manner in which these

small changes of position follow one another must now be

considered for the case of plane motion.

In Figure 5, let AB, A'B'
, represent two successive posi-

tions of a plane figure (as defined by the position of two

FIG. 5.

points A and B in it) at the beginning and end of an interval

of time which is very small as compared with the whole

period of motion.

Join AA'
y BB', and bisect the lines AA f

, BE', by straight

lines perpendicular to AA', BB f

,
and intersecting at Cx .
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Then it is plain that C^A = C^A' and C^B^Cf, and if

the point A had described a very small circular arc with

centre Cv its new position would have been A', and its path
would have been indistinguishable from the line AA'. The

actual infmitesimally small change of position of the point A
is therefore the same as if it had /been rotated in the plane
of motion around an axis perpendicular to the plane and

passing through Cv and similarly for the point B. Thus,

knowing the change of position of two points' in the rigid

figure considered,we saythat the actual instantaneous motion

of the bodyAB has been equivalent to a virtual rotation about

the centre Cr During the next instant the instantaneous

motion may be around some other point C
2 indefinitely

near to Cv and so on. The point C
2 corresponds to the

movement from A'B' to A"B" . Thus to every part of the

motion of AB, with regard to the plane, there corresponds
a certain point C in the plane, about which an equivalent
virtual rotation has taken place. Such points, as C

lt
C

2
. . .

,

are called the instantaneous or virtual centres of AB with

regard to the plane. The locus of Cv or the curve described

by the point C on the plane, is known as the centrode of AB
with regard to the plane, and, in general, it forms a con-

tinuous curve.

In the case of a rigid body having plane motion, it would

be more correct to consider the equivalent rotation as tak-

ing place about a virtual axis (perpendicular to the plane of

motion) of which the points Cv C
2

. . . are the successive

traces on the plane of motion. Such a virtual axis would

then describe a surface in space, this surface being known
as the axode of the body with regard to the plane of motion.

For most cases of plane motion, however, we are content to

simplify matters by considering the centrode instead of the

axode. We shall see later that in more complex forms of

motion the axode becomes of great kinematic importance. It

is in every case what is called a ruled surface, i.e., a surface

described by successive positions of a straight line in space.
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Referring again to the plane motion of the figure AB
(Fig. 5), let us inquire what happens if our construction

fails. This will occur if the bisectors of the lines AA ' and BB'
are parallel, in which case the successive positions of AB
are also parallel to one another, and the motion of the body,
or of the figure it represents, is one of simple translation

in a straight line. The virtual centre for such motion as

this is then at an infinite distance, and we may regard any
plane motion of translation in a straight line as equivalent
to a rotation about an infinitely distant centre. Again, sup-

pose that one of our reference points A does not change its

position at all. It is easily seen that AB has now simple
rotation about .4

,
and during the continuation of this motion

we have no longer a virtual but a permanent centre. It

may happen that the lines bisecting AA' and BB' are coin-

cident. A little consideration will show that in this case,

since the triangles ABC1
and A'B'C^ must be equal -in all

respects, the point 6\ is at the intersection of AB and A'B',

produced if necessary; as before, a simple rotation about

C
l
would suffice to move AB into the new position A'B'.

It is thus shown that in every case the motion of a plane

-figure in a plane may be regarded as equivalent to a simple
rotation about some actual or virtual centre, whose position in

the plane will be fixed in the case of simple rotation, or will

be at an infinite distance in the case of simple translation.

Such a virtual centre, however, is in general neither fixed, nor

at an infinite distance, but changes its position as the body
moves, and its locus in the plane is the centrode of the body
with reference to the plane. Note that only rigid bodies

or figures can have centrodes, for we assume that the posi-

tion of our reference-line AB in the figure or body remains

unchanged throughout the motion, and.we represent a rigid

body by the line joining the two points in question.

It has thus been seen that the centrode of a body with

regard to the plane of motion is a curve described on that

plane by the virtual centre of the body. Let us now con-
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sider the relative motion of two bodies in a plane. Instead

of supposing that the virtual centre M (Fig. 6) of the first

bodyAB traces its centrode on the plane of motion, imagine
that the curve is marked on a sheet of paper or surface rigidly

attached to the second b.ody CD, and that the body CD is

fixed. The point M is then the one point common to the

two bodiesAB and CD at which there is no relative motion, for

the only possible relative motion would be rotation about

the point M, a motion which is non-existent as far as a

point is concerned. M is the virtual centre of AB relatively

to CD, but. evidently it might equally well be called the

virtual centre of CD relatively to AB. Next suppose that

AB is fixed, and let CD have exactly the same relative motion

as before. At the instant when the relative positions of

AB and CD are the same as those just considered, the vir-

tual centre will be the same point M, but it may now be

supposed to describe its centrode on the body AB, and not

on CD. This centrode (that of CD relatively to AB) will

not be the same curve as that described before, although

they must have one point M in common at any instant. It

is evident, therefore, that the two centrodes corresponding

to the relative motion of two bodies always touch at a point,

which is the virtual centre for the instant considered, and

we may represent such relative motion by the rolling on one

another of a pair of centrodes. Further, we shall find that

from the form of these centrodes we can determine the

relative motion of the two bodies.

To make this clearer, the two cases of motion are repre-

sented in Fig. 6. AB and CD represent the original posi-

tions of the two bodies, and, CD remaining fixed, AJ3V
A

2
B

2
. . . A

5
B

5 represent successive positions of AB, the

motion from AB to A^B^ corresponding to a rotation about

a virtual centre M
t ,
and so on. The curveM

1
M

2
. . . M

6
is

then the centrode of AB with regard to CD.

Next we have plotted the positions Cf)r C
2
D

2
. . . C

5
D

5

which CD would occupy, supposing that the relative motion



INTRODUCTORY CONSIDERATIONS. 15

were the same as before, but that AB now remained fixed.

For example, in the figure C3
D

3
has the same position rela-

tive to AB that A
3
B

3
has to CD, and so on for all the other

positions. We now find the series of virtual centres Mv

FIG. 6.

N
2

. . . AT

5 by the construction previously explained, and

see that these centres lie on another curve touching the first

at MI and forming the centrode of CD with regard to AB.

Remembering that this curve is attached to, or rather

described on, the body represented by AB, suppose that CD
remains fixed, while AB (with the centrode attached) moves

from AB to AJ3 lt i.e., AB rotates instantaneously about

Mr If the movement is imitated by tracing AB and the

curveMv N2
. . . N

5
on paper and placing AB in the position

A
2
B

2 ,
it will be found that N

2
coincides with M

2
. When

AB is at A
3
B

3 ,
M

3
and N

3 coincide, and so on. Such suc-

cessive coincidences can only occur if the curve M N
5
rolls

on the curve M
X
M

5 .

In the same way if we trace CD and the curve M^M.^ and

let CD occupy its successive positions, we find that the points

coincide as before, the curve MJVL^ now rolling on M^N^.
Thus the given relative motion of AB and CD, through

the successive positions shown on the figure, is represented

by the rolling on one another of two curves, the pair of cen-

trodes of the two bodies.
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The reader is strongly recommended to satisfy himself

of the correctness of the above statements by actually draw-

ing a pair of bodies, and their centrodes for a given case of

relative motion. Great care and accuracy in drawing are

necessary in order to obtain correct positions for the virtual

centres.

We have now discussed the case of the relative motion of

two bodies in a plane, and have seen that their virtual

centre describes a pair of curves, namely the centrodes, each

being traced on one of the two bodies.

Suppose next that we have three bodies, represented,
as before, by plane figures, and having any kind of relative

plane motion. The three bodies will evidently have three

virtual centres, while four bodies would have six, and so on
;

in fact, a kinematic chain having plane motion and con-

^ (^ T
)

sisting of n links will have - virtual centres connected
2

with it, for it will easily be seen that the number of virtual

centres must be that of the combinations of n things taken

two at a time.

On examination of any particular case we shall see that

the various virtual centres in a mechanism having plane
motion are arranged in threes, each three lying in a straight

line, whatever be the position of the mechanism.

The proof of this statement is as follows : Consider any
three of the bodies, or links forming the kinematic chain

or mechanism, and let us call them a, b, c. Denoting the

virtual centre of a with regard to b by ab and remembering
that this is the same point as the virtual centre of b with

regard to a, we have for the three bodies considered the

three virtual centres O ab ,
O ac ,

O bc . First consider b as being
fixed. Then with regard to the point O ab any point in a

has a simple motion of rotation, so that, for example, the

point O ac is moving instantaneously and relatively to b in a

direction at right angles to the line ac . . . (}(&.

Again, with regard to the point O bc , any point in c
t such.
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as O ac ,
must be moving instantaneously and relatively to b

in a direction at right angles to the line O ac . . . O bc .

Thus the point O ac , regarded as a point in a, is moving
in a line perpendicular to ac . . . O ab ;

while if regarded as

a point in c, O ac moves in a line perpendicular to ac . . . O bc ,

b being regarded as fixed in each case. O ac cannot ,have

two separate directions of instantaneous movement at the

same instant, hence the lines O ac . . . ab

both perpendicular to the same line.

be are

They cannot be

FIG. 7.

parallel, since they both pass through O ac ,
and they there-

fore coincide in direction, i.e., the points O ab , ac ,
O bc lie on

one straight line.

The position of the virtual centres in various mechanisms
will be studied when we consider the relative velocities of

their different parts. In many instances the proposition

just given is of great assistance in determining the posi-

tions of the virtual centres in a mechanism.

6. Non-plane Motion. In the majority of cases it will

be found that the relative motions of the parts of machines

are plane motions, either of rotation or translation, or both

combined. Such motions can be studied geometrically by
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the method indicated in the preceding section. It is pos-
sible (as will be seen later) to have a lower pair, in which

the motion is non-plane. A somewhat limited number of

cases of higher pairing also occur in which the motion is

non-plane.
In every instance, however, in a closed pair, we have seen

that there must be continuous contact of the surfaces, and
it follows that the most general possible relative motion of

two parts of a mechanism is represented by the motion of

one rigid body continuously touching another at a point
or series of points.

Any such motion must be of the nature of sliding, roll-

ing, or spinning, separately or combined.

Simple rolling takes place if the instantaneous axis lies

in the common tangent plane at the point of instantaneous

contact.

Simple spinning exists when the instantaneous axis is

the common normal at the point of contact.

Suppose that the relative motion is such that the instan-

taneous axis passes through the point of contact, and is

neither in nor perpendicular to the tangent plane. The
motion is then combined rolling and spinning. If the in-

stantaneous axis does not pass through the point of contact,

the rolling and spinning will further be combined with a

sliding motion.

We have a familiar example of combined rolling and

sliding in the mutual action of a pair of teeth in an ordinary

spur-wheel; the motion of the balls in a bicycle bearing,

again, is a case of combined rolling and spinning.

The links of a certain class of mechanism are found to

have such motions that their instantaneous axes all pass

through a fixed point, while each portion of every link

remains at its own constant distance from that point. Such

motion is called spheric motion, because any given point

on a link must be always on the surface of a sphere de-

scribed about the fixed point as centre. It is evident that
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the most general case of spheric motion is that of a rigid

body of which one point is fixed, and any kind of spheric

motion can be made up by combining spins about axes

passing through the fixed point. Plane motion may be

looked upon as a particular case of spheric motion, in which

the radius of the spheres is infinitely large.

7. Freedom and Constraint. We have seen that the

essential feature of a kinematic pair is the -mutual con-

straint due to the forms of the two elements of which the

pair is composed. Before considering the ways in which

constraint or closure is actually applied it will be well to

examine briefly the conditions on which the freedom of

movement of a rigid body depends.

The most general motion of a free rigid body may be

looked upon as being a combination of three independent
rotations about three rectangular axes, with three inde-

pendent motions of translation along those axes. Such a

body may then be said to have six degrees of freedom, one

of which is taken away (or one degree of constraint is im-

posed) when any one of these six modes of movement is

rendered impossible. Suppose that the free rigid body is

forced to touch a smooth fixed surface at one point, one

degree of freedom is lost, for no translation can take place

in a direction normal to the tangent plane to the surface at

the points of contact. The three motions of rotation, how-

ever, still remain possible, and so does motion of translation

in any direction parallel to the tangent plane at the point

of contact. A second point of restraint may be arranged

so as to prevent one motion of rotation, or a second motion

of translation, according to its position with regard to the

first point of restraint and with regard to the form of the

body. A third point of restraint causes the body to lose a

third degree of freedom, and, finally, it will be found that

all six degrees of freedom are lost, and the position of the

body is fixed if six of its points are made to rest on six
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portions of the surface of the smooth fixed body, and if

these portions are properly formed and placed.*

It may be shown that in general six conditions are

required to completely determine the position of a rigid

body, or, expressing the same thing in another way, six

coordinates specify the position of^one rigid body relatively

to another, considered to be fixed.

The definitions of a closed pair or of a closed chain

given in 2 and 3 thus mean that any element or link

in a closed pair or chain may have only one degree of

freedom as referred to the fixed element or link.

Consider, for example, a screw turning in a fixed nut,

like the screw of a micrometer gauge. The position of

such a screw is determined exactly if an arm attached to

its head is forced to remain in contact with a fixed stop on

the body of the gauge, and we say, therefore, that such a

screw has only one degree of freedom, inasmuch as its

position is fixed by one point of constraint. The motion

of a screw in its nut, a motion of translation accompanied

by a definite and proportional motion of rotation whose

axis is the direction of translation, is the most general kind

of motion that can be possessed by a body having only one

degree of freedom.

The reader will notice that in two special cases, namely,
when the pitch of the screw is infinite, and when the pitch

is zero, the twisting motion of the nut becomes a mere

translation or a mere rotation, both being specially impor-
tant as plane motion involving one degree of freedom.

In a similar way such a body as the connecting-rod
of a direct-acting steam-engine is said to have constrained

motion, having only one degree of freedom. The only

possible motion at any instant for a given point on the

rod is that of rotation about a certain virtual axis parallel

to the axis of the crank-shaft.

* See 60, Chapter VII.
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Such a contrivance as a ball-and-socket joint cannot be

regarded as a closed pair, for the ball has three degrees of

freedom with regard to the socket. The ball has one point

fixed, its centre, thus rendering all motion of translation

impossible, and causing three degrees of constraint. The

socket in fact might be replaced by three pairs of points

touching the sphere at the ends of three diameters, each

pair of points corresponding to one degree of constraint.

Further examples may easily be imagined ; the method

of determining the conditions as to freedom and constraint

in any particular case will be evident from the instances

just given.*

8. Elements and Pairs in Rigid Links. It has been

pointed out that the pairs of elements formed on the links

of which a mechanism is made up are of two kinds, namely,
lower pairs, in which the elements are in contact with

each other over the whole or part of the area of certain

surfaces, and higher pairs, in which such contact occurs

only at certain points or along lines of points.

In those portions of machines which are rigid the ele-

ments must have forms which can be readily produced by
the ordinary processes of the workshop. Accordingly we
find that their shapes are such as can be formed either in the

lathe or the milling-machine, or by one of the many machine

tools in which the cutting-tool describes a straight line with

reference to the work. The rigid elements forming the

closed pairs in machines therefore have in general for their

working surfaces either surfaces of revolution, plane sur-

faces, or screw surfaces.

From the definition of Lower Pairs it is also plain that

the forms of their elements must be such as to fit one another

not only in one position, but in any position they may take

up during their relative motion. It is plain also that two

* The reader may refer to Thomson & Tait, Natural Philosophy, Part I, Sec-

tions 195-201; also Tait, Enc. Brit., art. Mechanics.
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surfaces of revolution, the one full and the other hollow, will

fulfil this condition, and if properly

formed, so as to prevent any sliding

along the axis of revolution, will con-

stitute a closed lower pair in which

either elem&nt can only have con-

strained motion relatively to the other.

Such pairs are called shortly turning

pairs, and Fig. 8 represents two bodies,

a and 6, so shaped as to form such a
FlG - 8 -

turning pair. The body b is partly
cut away, to show more clearly the outline of a.

The same condition (of fitting each other in any position)
obtains in the case of a screw of uniform pitch and its nut.

The relative motion is also constrained, as has already been

stated, and consists of a motion of rotation around the

axis of the screw, combined in a constant ratio with a motion
of translation along that axis. Such a pair of screw sur-

faces forms a screw-pair*
In general a lower pair formed by two cylindrical or

prismatic surfaces will have constrained relative motion,
because it will only be possible to give one body a motion

of translation along the generating lines of the prism or

cylinder relatively to the other body. If, however, the

forms are circular cylinders, which are, of course, surfaces

of revolution, then indefinite turning also is possible, the

motion ceases to be constrained, and the pair is no longer
closed. A pair of cylindrical or prismatic surfaces for

which sliding only is possible is called a sliding pair (see

Fig. 9)-

On examination it will be found that pairs of conical

and other forms of surfaces generated by straight lines do

not fulfil the conditions of continuous fitting or contact

during motion, unless they are at the same time surfaces

* See Chapter XL
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of revolution. Non-cylindrical ruled surfaces in machines

therefore have usually to take part in higher pairing.

The three classes of lower pairs just discussed are then

the only ones found in the rigid portions of machines.

Examples of each kind will present themselves on examin-

ing a few simple machines, and the means of constraint

should be noticed in each case. For instance, in a shaft-

FIG. 9.

journal, endways motion or sliding of the shaft in its bearing
is prevented either by making the diameter of the journal

smaller than that of the adjoining portions of the shaft, or

by securing collars on either side of the bearing.

All the forms of ruled surfaces mentioned above, and

occasionally plane surfaces, surfaces of revolution, or screw

surfaces, are found as portions of higher pairs, as well as of

lower pairs.

A simple arrangement of higher pairing can frequently

be used to give motion of a kind which could only be other-

wise obtained by a complex chain of lower pairs.

It is important to notice that higher pairs give relative

motion of a much more complex kind than is attainable

by the use of lower pairing. This fact is pointed out by
Burmester,* and is expressed if we say that supposing a

* Lehrbuch der Kinematik. 114, 116.
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and b are two elements of a closed pair, and if a point A
in a describes the same curve on b as a point B in b (originally

coinciding with A] describes on a, then the pair is a lower

pair. If, on the other hand, A describes on b a line or

curve different from that described by B on a, we have a

case of higher pairing.' 'Thus jn the case of a lower pair

no alteration of the relative motion occurs whether we

consider one or the other of the elements as being the fixed

one.

Lower pairing is the more important from a constructive

point of view, because the elements of a lower pair have a

simpler relative motion, they are able to resist wear when

transmitting heavy loads, and they can easily be made tight

under fluid pressure. These are properties not possessed by

higher pairs.

9. Pairing of Non-rigid Links. Passing on to the pair-

ing of non-rigid links in mechanisms, it is found that these

links may be classed under the following heads :

(1) Flexible bodies, such as ropes, belts, or chains.

These are almost invariably paired with cylindrical sur-

faces on to or from which they unwrap or wrap themselves.

Such pairing may be called tension pairing, since the rope,

belt, or chain is necessarily in tension.

(2) Pressure links, which continually exert pressure on

the elements with which they pair. These links generally

consist of portions of fluid, such as air, steam, or water,

and pair with the interior of the vessels containing them.

Such a pair is known as a pressure pair.

Springs often form most important portions of mechan-

isms and machines. They may be arranged so as to be

in tension or in compression, and 'the resulting pairs may
be said to be tension or pressure pairs, as the case may be.

Actually all machine parts are elastic and so act to a

certain minute extent as springs, but in kinematics we

neglect all small changes of form, and consider such pieces

as being rigid, classing under the head of springs only those
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portions of machines whose elastic deformations under load

are considerable in extent when compared with the proper
motions of the other machine parts or links with which

they pair.

Non-rigid links will be considered at greater length sub-

sequently.

10. Classification of Mechanisms. In attempting to

classify mechanisms, which are made up of various kinds

of links and involve so many kinds of pairing, we are im-

pressed with the magnitude and complexity of the task.

It may be said, in fact, that up to the present no wholly

satisfactory kind of machine classification has been pro-

posed. Some account of what has been done in this direction

will be found in Chapter XIII
;
for present purposes it will

be sufficient to consider mechanisms under three heads.

(1) Those involving only plane motion. These may be

called shortly Plane Mechanisms, and form by far the most

mportant and numerous class.

(2) Mechanisms involving spheric motion, or, more

briefly, Spheric Mechanisms.

(3) Chains the relative motion of whose links is neither

plane nor spheric, but of greater complexity.
It is, however, to be understood that a mechanism of

the third kind may contain certain links whose motion is

plane or spheric, while any of them may include examples
of both lower and higher pairing.

A well-known instance of a spheric mechanism is Hooke's

joint, the characteristic property of such chains being that

the axes of the turning pairs they contain meet in a point.

In the third class the most common examples are screw

mechanisms.

There is another method of classifying machines accord-

ing to their geometrical properties, and according to the

methods necessary for determining the various virtual

centres of their links. Following this system, we should

say that mechanisms of the First Order are those in which,
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having given the relative position of any two links, the posi-

tions of all the other links may be found by geometrical
construction of straight lines and circles. From this it

'follows that in such mechanisms, having given the whole

mechanism in one position, we can find geometrically all
4<*

its other possible positions, and :the virtual centre of each

link relatively to every other. Mechanisms not possessing

these properties belong to higher orders, and are of com-

paratively infrequent occurrence.



CHAPTER II.

POSITION, VELOCITY, AND ACCELERATION.

ii. Velocity. While Kinematics in its general sense

comprises all kinds of problems dealing with pure motion,
the number of such problems falling within the province of

the Kinematics of Machines is somewhat limited. We
shall consider in this chapter some elementary notions con-

cerning velocity which are applicable to the purposes of

the Kinematics of Machines. Methods of studying the

position and motion of a point or rigid body from a geomet-
rical point of view have already been indicated; it now
remains to investigate not only the amount by which such

position is changed during motion, but the rate of such

change of position. Going a step farther still, it may be

asked, does such velocity increase, diminish, or change in

any way as time goes on, and if so, at what rate?

The rate of change of position of a point or body is

called its velocity. A body, as we have seen, may change
its position by a motion of translation, or by one of rotation.

Hence wre distinguish between linear and angular velocity.

The former is measured by the space passed over in unit of

time, and is usually expressed in feet per second, although
other units, such as miles per hour or knots, are adopted in

special cases. The latter is measured by the angle de-

scribed in unit of time, the natural unit being therefore one

radian per second. Engineers, however, commonly measure

angular velocity in revolutions per minute. Either kind

of velocity may be uniform or variable.

It is important to note that the term velocity involves

27
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the ideas of both speed, direction, and sense. In other

words, a velocity is a vector quantity, and, like other vector

quantities, may be represented by a straight line of definite

length, this length being proportional to the speed, or mag-
nitude of the velocity, jneasured in feet per second, radians

per second, or whatever units are to be employed.
In the case of linear velocity the direction of the vector

or straight line representing the velocity on .the diagram is

taken to represent the direction of the motion. Thus, for

example, we might draw upon a map a line running east

and west, and 2 inches in length, and take this line as repre-

senting a linear velocity of 2 miles per hour, or 2 feet per

second, either from east to west, or from west to east. The
sense of the motion may be either from east to west, or from

.west to east. In order to indicate the sense, we place upon
the line a small arrow-head so as to show the point towards

which the body is moving (see Fig. 12).

In the case of angular velocity the direction of the vector

on the diagram would be taken to represent the direction

in space of the axis about which the spin or rotation is taking

place, and a line similar to that mentioned above would

mean a spin of two radians per second, or two revolutions

per minute, according to the scale, about an axis lying east

and west. This rotation may be either right-handed or

left-handed, and it is therefore customary to indicate the

sense by placing the arrow-head in such a fashion that the

spin will appear to be right-handed, or clockwise, when

looking along the axis and following the arrow-head.

It is plain that in this manner a velocity, whether linear

or angular, may be completely represented by a vector,

having magnitude, direction, and sense.

12. Uniform Velocity. A body having uniform velocity

(whether angular or linear) performs equal changes of posi-

tion in equal times. If the body has a uniform linear veloc-

ity v, it describes a distance vt in time /, where / is any num-
ber of units of time. Calling s the space described, we have
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therefore 5 =vt. Similarly, if the uniform velocity is angular
and is denoted by CD, any line on the body in a plane per-

pendicular to the axis of rotation describes a> radians in

each second and therefore cut radians in t seconds. Hence,

calling 6 the angle described in t seconds, we have

6 = cut.

If a point, at distance r from the centre about which it

moves in a circular path, has a linear velocity v, its angular

velocity is measured by the angle subtended at the centre

by the path it describes in one second. Hence

v
co=- or v = cor.

r

13. Variable Velocity. In general a moving body
varies its speed as well as its direction of motion. It is easy

by observing the time taken to travel over a known dis-

tance, for example in a train, to calculate the average speed

of the train during the interval considered. This does not

tell us, however, the actual speed of the train at any instant

during the interval of time, which may be quite different

from the average speed.

The velocity at any instant, or instantaneous velocity, is

measured by the space (or angle, as the case may be) which

would have been described in a unit of time if the motion

had continued uniformly, during that interval, at the same

rate as at the instant considered. The word instant is here

used to mean an indefinitely small interval of time.

We are not able to measure the distance (or angle) de-

scribed during an indefinitely small interval of time, and

therefore have to obtain the value of the instantaneous

velocity of a body in another manner.

This will be best understood by a numerical example.

Suppose that a man in a street-car at 12 o'clock finds that
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in 10 seconds the car traverses a distance of 200 feet. This

gives 20 feet per second as the average speed during the 10

seconds after 12 o'clock. Suppose that other observations

taken during the first i^, 2, and 4 seconds showed that

during these times the car travelled 30, 48, and 100 feet, cor-

responding to average speeds of ^5, 24, and 21.75 ^ee^ Per
second. It is evident that the speed must really have been

continually diminishing, and that the shorter the time dur-

ing which the observation was made, the more<nearly do we

T

FIG. 10.

obtain the speed at which the car must have been travelling

at 12 o'clock. To arrive at this more exactly, since we
cannot measure the distance passed over in an infinitely

small interval of time, we plot a curve from our observations,

as in Fig. 10, and see that the speed at 12 o'clock must have

been 27 feet per second. In mathematical language, if As

be the distance traversed in a small interval of time At, the

average velocity during that small interval is ,
while the

velocity at the instant beginning the interval is measured by
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diminishing At indefinitely, and finding the limiting value

of -, or, in the language of the calculus . Thus
At at

dsv= .

dt

The same reasoning, of course, applies in the case of

angular velocity, where we should write

dd
CO =.r-.

dt

Compare these with the corresponding expressions in the

case of uniform velocity.

14. Uniform Acceleration. A body moving with uniform

acceleration changes its velocity by equal amounts in equal
times. Thus suppose that in time t the velocity changes
from v

v
to v

2 ;
we have, if a is the acceleration,

, N

(i)

fft f fft

Again, the average velocity during the time t is
*

\ the
2

arithmetical mean between the initial and final velocities;

hence if 5 be the space described,

From these two expressions we find
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But v
2
= v

1 + at. Substituting in (3) ,
we get

(4)

In the case of angular- velocity .precisely similar relations

hold, so that, calling a the uniform angular acceleration, co

the angular velocity at the beginning of the time t, and

the angle described, we have, instead of (4), 4

(4a)

To express the velocity in terms of distance (or angle)

and initial velocity we shall have instead of (3)

(3a)

while the expression connecting velocity, acceleration, and
time is

w
2
= a)

l + at. ; . f -. .' . -\- (ia)

As an example of the use of these expressions, suppose a

wheel is revolving thirty times per second and comes to rest

in 12 seconds. How many revolutions will it make in coming
to rest if uniformly retarded ?

We have oj
2
= aj

l
+ at ; hence

30X271 = 0,

and a= - ^-= 15.71 radians per second per second.

Again, w
2

2 = oj
1

2 -f2^; hence

(6o;r)
2 I07T0 = o,

and = --- = 360;: radians.
I07T

Hence the wheel comes to rest in 1 80 revolutions.
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Again, a train starting from rest has a uniform accelera-

tion of half a mile per hour per second. How far will it

have travelled before attaining a speed of 30 miles per hour,

and in what time will this occur?

In the equation (4) above we have s = v
1
t+ $at

2
.

2640Here v
1
=

o, t evidently will be 60 seconds, and a =

0.733 feet per second per second. Thus
3600

It should be noted that it is as incorrect to speak of

an acceleration of so many feet per second as it would be to

say that a body has a velocity of so many feet, without men-

tioning the unit of time.

15. Acceleration in General. The determination of

velocity and acceleration in the case of non-uniform or non-

imiformly accelerated motion will be discussed later.

Acceleration is defined generally as rate of change of velocity

with regard to time, and so far we have used the term as

meaning change in the magnitude of the velocity, whether
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linear or angular. Strictly speaking, however, a change
in the direction of motion in linear velocity, or in the position

of the axis of rotation in angular velocity, is also an accelera-

tion. In fact, a point travelling in a circular path around

a fixed point has an acceleration impressed upon it, although
its angular velocity may.be uniform, and such acceleration

is called radial, for reasons which -will presently be seen.

In Fig. ii let AB represent a portion of the curved path

alng which a point is travelling with a linear velocity v,

whose direction is continually changing. Let p be the

radius of curvature OP of a very small portion PQ, and
the centre of curvature, <p being the very small angle be-

tween the tangents at P and 0, an angle so small that the

arc PQ is not sensibly different from its chord.

Consider the acceleration in a direction parallel to PO.
The time taken for the particle to travel from P to Q will be

PO
=-. But during this time the distance traversed under ac-
v

celeration a is P^Q parallel to PO. Hence (if a is constant)

It is known that for very small angles the numerical

value of the sine of an angle is sensibly the same as the angle

itself (of course expressed in circular measure). Also in the

figure if we make <p small enough, MQ = JPQ, the error in

this statement diminishing as <p diminishes. Hence for an

indefinitely small value of (p we may say that

i P i

The statement is exactly correct, and a is the radial

acceleration at P, because we have taken <p as being the

angle described during an indefinitely small interval of

time.

The earth's equatorial radius is 4000 miles, and the
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eartl'.. makes one rotation on its axis in about 86,200 seconds.

What is the radial acceleration of a particle on the earth's

surface at the equator?
Linear velocity of a point at equator

2^X4000X5280 -= t -^ feet per second.
86200

Thus --,

P 862oo 2

= 0.112 feet per second per second.

It is often necessary to find the acceleration of a body
along its virtual radius; this is of course determined in

exactly the same way as the radial acceleration with regard

to a permanent centre.

16. Composition of Velocities and Accelerations. It has

been already pointed out that velocities, whether linear or

angular, can be represented by straight lines of definite

length, sense, and direction, and are in fact vector quantities,

as distinguished from scalar quantities, such as mass,

energy, and so on which have simply numerical values.

Accelerations are also vector quantities.

The resolved part of a vector in any new direction is

found by projecting its original length on the new direction.

s

FIG. 12.FIG. 12.

If, for example, a ship is proceeding northeast at a speed of

13 knots, represented by the vector AB (i knot being a
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speed of 6080 feet, or i nautical mile, per hour), its resolved

velocity in a northerly direction is represented by

AC =AB cos 45 =
13 Xo.yoy =9.19 knots.

This shows that each hour the position of the ship is 9:19

nautical miles farther to the northward.

Again, suppose that the ship, still steering N.E. at the

same speed, runs into a current whose speed is 4 knots due

east, what will be the real velocity of the ship relatively to

the earth? Relatively to the water its speed is still 13 knots

N

FIG. 13.

in a N.E. direction, but the water is itself moving, and at

the end of the hour the ship will evidently be at D, a position
obtained by measuring 4 nautical miles east from B. On cal-

culation it will be found that at any time during the hour the

ship has been moving relatively to the earth along the line

AD, and its real speed over the ground (about 16 knots) will

be measured by the length of AD, the third side of a triangle,

whose other two sides represent respectively the velocity
of the ship relatively to the water, and the velocity of the

water relatively to the earth. We say, then, that the vector
AD represents the resultant of the two vectors AB and BD,
obtained by the process of vector addition.
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The above example deals with plane motion in a straight

line only. But if we are treating of the motion in space of

a body having six degrees of freedom, its motion may be

considered as made up of three motions of simple translation

and three motions of rotation, which, when compounded
according to the method just explained, constitute the

actual motion of the body.
It must not be forgotten that the resultant of two or

more angular velocities can be found in exactly the same

way as for linear velocities. As already explained, it is

customary to indicate an angular B

velocity by a vector (as in Fig. 14),

representing the numerical value of

the velocity by the length AB, the

direction of the axis by the direction

of A B, and the sense of rotation by
drawing AB in such a manner that FIG. 14.

the rotation is clockwise, or right-handed, when looking from
A to B. It is often necessary to compound or to resolve

spins or angular velocities according to the method of

vector addition, which will be already familiar to most
readers under the name of the triangle of velocities, or

the parallelogram law for the composition of vectors.

17. Resultant Acceleration. In Fig. 15 let AB repre-
sent the original velocity of a particle, and suppose that

accelerations represented by BC, BD are impressed upon
the particle. Then BC and BD may be taken to represent
the velocities generated in one second, corresponding re-

spectively to the two accelerations.

If now the acceleration BC had alone acted on the point,

its velocity at the end of one second would have been AC.

Again, if AC had been the original velocity and an accelera-

tion BD had been impressed, the final velocity at the end

of one second would have been AD'
,
where CD' is equal and

parallel to BD. The two accelerations, therefore, have

changed the original velocity from AB to AD' . But this



38 KINEMATICS OF MACHINES.

effect would have been produced by compounding with AB
for one second a velocity BD', and we may therefore look

on BD f as representing the change of velocity in one second,

due to the action of the accelerations BC and BD. In

FIG. 15.

other words, BD' is the resultant of the accelerations BC
and BD.

The general rule for the composition or addition of vectors,

then, is that the resultant of two vectors is the diagonal of a

parallelogram (or the third side of a triangle) of which the

two components form the two adjacent sides. In this way
we can find the resultant of any number of velocities, or

of accelerations, either linear or angular. The same rules

apply to the composition of any other vector quantities.

18. Diagrams of Displacement and Velocity. In study-

ing the motion of a body, whether linear or angular, it is

necessary to know the position of the body at every instant

during the motion, if we desire full information as to its

velocity and acceleration. We have seen that if we only
know the position of the body at certain times we can obtain

the value of the average velocity between those times, but

cannot tell exactly how the real velocity has changed.
It would of course be very cumbersome to have to state

in words or figures a sufficient number of particulars to give
us a practically complete knowledge of the position, velocity,

and acceleration of a body, and therefore in such cases
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graphic methods of representation and calculation are gen-

erally adopted.
For example, in order to determine the velocity of a

body whose changes of position are known, such a diagram
as Fig. 1 6 is constructed. Two axes, OA, OB, are drawn at

right angles, and distances measured parallel to OA accord-

ing to any convenient scale are considered to represent time.

FEET

15

10

o 5
SECONDS

FIG. 16.

while lengths measured parallel to OB represent either the

distance that has been traversed by the body, reckoning
from some known position, or the angle turned through by
the body at any given instant. This quantity we may call

the displacement of the body, and it may be either linear or

angular.

For instance, from the figure we see that after the lapse

of 3 seconds the body in question has moved 10 feet from

its original position, and we might give the information

contained in the diagram in a less complete form in the

shape of a table, thus:

Time o i 2 3 4 5 seconds.

Displacement, o o 5 10 12 12 feet.

From the diagram, however, we are enabled to gather

further particulars, for it is plain that the curve of displace-
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ment during the second and third seconds is straight, i.e.
r

distance is increasing proportionally to time, or the velocity
is uniform and the speed 5 feet per second. During the

fourth second the distance increases more and more slowly,
and then remains constant, hence the velocity diminishes

and finally ceases. Thus plamly, in order to find out the

velocity at any instant from such a diagram, we have only
to determine the rate at which distance (or angle) is increas-

ing or diminishing at that instant. We shall see that this

information can be obtained from the form of the curve.

a b

FIG. 17.

In Fig. 17 let ABC be any curve of displacement on a

time base, and let A a, Bb represent the distances (or angles)

corresponding to the times Oa, Ob. We wish to determine

the velocity at the pointA , i.e., after the lapse of the time Oa.

It has already been pointed out that to find the instan-

taneous value of a velocity, or the velocity at any instant,

we must take what is really the average velocity during an

infinitely small time, or, if As be a small change in position
and At the corresponding interval of time, the instantaneous

velocity is the limiting value of . In the figure let A and

B be very close together; evidently BD=Bb-Aa=4s, the
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change in distance during the time At. The small interval

of time At is represented by the length ab=AD. Hence
the ratio

BD _As
AD~Tt'

Draw the straight line AB and produce it to cut the axis of

. ^ 1
.

i A r- As BD Aa
time in E, making an angle AEa =

<p. Then =-7m = ~-
At A.D h,a

= tan
<p. Now suppose we diminish At, making B approach

A more and more nearly, as is shown on a larger scale in

FIG. 18.

Fig. 1 8. The chord AB becomes AB
l and, as At diminishes,

approaches more and more closely to the tangent to the

curve at A, and, if At is made infinitely small, AB will

coincide with that tangent. Still, however, the value of -

Ai

is shown by the numerical value of tan <p, and in the limit

velocity = tan <p
= *

at

Accordingly we may say that to find the velocity of a

body at any instant from its diagram of displacement drawn
on a time base, we have only to draw at the point correspond-

ing to that instant a tangent to the curve. The slope of

that tangent, as measured by the tangent of the angle it

makes with the axis of time, is proportional to the velocity,
and indeed represents the velocity numerically if the dis-

tances are measured to their proper scales. For example,
at C in Fig. 16, to the scales marked, tan <p has the value
T f) Tf^P1 ^"

and shows, therefore, that at 3 seconds the body in
2 sec.

J

* See 13.
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question had a velocity of 5 feet per second. If a scale of

miles had been marked along the axis of distance, while

hours had been measured along the axis of time, our velocity
would have been read in miles per hour.

The reader should notice that at the point F in Fig. 1 7

the displacement has ceased to, increase with increase of

time, and is about to decrease
;
the body has in fact reached

its maximum distance from its starting-point. At this

point the body must of course cease to be moving for an

instant, which is shown by the fact that the tangent to the

curve at jp is horizontal, corresponding to zero velocity.

After F the velocity will of course have to be reckoned

negative, since distance is now diminishing as time goes on.

If the velocity at every instant could be measured in this

way and a new curve drawn on a time base, having ordinates

at each instant proportional in length to the velocity at that

instant, we should obtain a curve or diagram of velocity.

Actually we obtain only a sufficient number of values to

give us a series of points on the curve, through which the

curve can be drawn. This has been done as an example
in Fig. 19. The full curve is a diagram showing the dis-

tance from London at times between 11.50 A.M. and 12.20

P.M., on a certain date, of the London and Exeter express

on the Great Western Railway, the times of passing various

stations and mile-posts having been carefully noted. From
this full curve has been drawn a dotted one, the height of

which at any point is proportional to the speed of the train

at that time
;
this dotted line in fact is a curve of velocity.

It will be seen that the curve of displacement slopes

continually upward, showing that the train did not stop

during the time considered. Its speed, however, was very
variable. The train performed the whole journey from

London to Exeter, 194 miles, in 3 hours 38 minutes without

a stop ;
thus the average speed was 53.4 miles per hour. At

about 12.14, however, the speed for a very short time is seen

to have exceeded 80 miles per hour, as shown at D, while
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shortly afterwards, at about 12.19, a signal-check caused the

speed to be reduced to about 10 miles per hour, as shown

at C. The method of finding points on the curve of velocity

is shown at B. The ordinate at B is proportional to the

ratio A a : Ea, where AE is a tangent to the displacement
curve at A.

By the construction of such curves we can trace out' the

whole history of the motion, and if a sufficient number of

points have been taken, and our drawing has B'een accurate,

the results will be trustworthy for all practical purposes.

It is often difficult to draw the tangents to the curve

correctly enough, especially if the slope of the curve is small,

and it is usual to adopt another construction, to be explained

later, which avoids the necessity of d: awing the tangents by
guesswork.

It is to be noted that diagrams of displacement may
quite well be drawn, in which ordinates represent angles

instead of distances, and from such diagrams angular
velocities can be obtained exactly as described above.

19. Diagrams of Acceleration. If a diagram of velocity

on a time base be drawn, the curve of acceleration can be

obtained from it by an application of the same method

adopted for getting the velocity curve from that of displace-

ment. In Fig. 20 let OAB be a curve of velocity. At any
point A the rate of change of velocity is the limiting value

of the ratio of the small change Av in velocity to the small

interval of time At in which such small change occurs, and

by similar reasoning to that in 18 it will be seen that

this ratio is numerically equal to the tangent of the angle

of slope of the curve at the point considered. In the figure,

then, the acceleration at A is represented by tan a. Plainly

at such a point as C, where the velocity has a maximum
value (having ceased to increase and being about to de-

crease), there will be no acceleration, and the acceleration

curve will pass through the time axis, as at c. Further, it

will be noticed that where the velocity is increasing uni-
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formly (as between D and E) ,
and the curve of velocity is

therefore straight, the acceleration curve becomes a horizon-

tal straight line, as at de.

FIG. 20.

In practice, when such diagrams have to be drawn

either for curves of velocity or of acceleration, a somewhat

different method is adopted (as shown in Fig. 21), based on
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700
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the same principle, but avoiding the necessity of drawing
a number of tangents to the curve, many of which can only
be determined approximately.

The diagram shows a curve of displacement* for an

electric street-car starting from rest. The data were ob-

tained from tests of a special car designed for an initial

acceleration of 3 miles per hour per second.

To construct from such a curve the corresponding curve

of velocity, the time shown by the diagram is divided into

a number of small intervals, in this case of 2 seconds each,

as at ab. On measurement the length be is found to repre-

sent 100 feet and is the difference between aa', or bb'
', and cb

f
.

Now aa' is the distance moved by the car during the first

1 4 seconds. Thus cb represents the distance traversed during
the fifteenth and sixteenth seconds, and accordingly the

average velocity for those two seconds was ^M^, or 50 feet per

second.

In the figure an ordinate ef of length five times be has

been marked off at the point corresponding to 15 seconds

from the start, and its extremity gives one point on our

curve of velocity. In the same way jk has been made 5 Xgh,
and so on.

A curve drawn through the points thus found shows

approximately what was the velocity at any time after the

start. We say approximately, because the actual velocity

at the middle of a 2 -second interval would only be equal to

the average velocity during such an interval if the straight

line joining ac (for instance) had been parallel to the tangent

to the displacement curve at d\ that is, if the points a", /, b"

had been in a straight line. We know that actually this

may or may not be the case, but by taking sufficiently small

intervals of time we can reduce the error from this cause to

any desired extent, until in fact it becomes negligible.

In order to obtain from the velocity curve that of accel-

* Taken from Engineering News, Oct. 14, 1897.
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eration, an exactly similar procedure is employed. The

length Im, for example, has been set up and exaggerated
fivefold at np, and is proportional to the change of velocity

during the tenth and eleventh seconds.

Having drawn our curves, it becomes necessary to deter-

mine their scales, that of the ofiginal diagram of displace-

ment being known.

The displacement diagram was drawn originally
* on such

a scale that be (representing 100 feet) was actually half an

inch; the scale of distance was then 200 feet to the inch.

The scale of time was i" = 5 seconds, or i second = i of an

inch. A length be transferred to the velocity diagram then

represented (if ab = 2 seconds) a velocity of 50 feet per

second, giving a scale of J" = 50 feet per second, or 100 feet

per second to the inch. For clearness this was exaggerated
in the figure, so that 20 feet per second = i inch. In the

same way the scale of the acceleration curve was made
such that five inches = 10 feet per second per second.

Scales of miles per hour and miles per hour per second have

also been marked for comparison.
In general, then, the scales of such diagrams may be de-

termined as follows :

Let the displacement diagram be drawn to a distance

scale of i inch = / feet, and suppose the short intervals of

time during which the average velocities are estimated are

each n seconds.

An ordinate of i inch in length on the displacement

diagram when transferred to the velocity diagram then

represents a velocity of / feet in n seconds, i.e., l/n feet per

second. The scale of the velocity diagram is then n/l inches

= i foot per second

Thus in the figure above we should have, if the ordinates-

were not exaggerated, a 'velocity scale of T for inch = i foot

per second, for / = 200 and n = 2. It was drawn actually to

a scale of ^V inch = i foot per second.

* It is of course reproduced here to a smaller scale.
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Considering next the scale of the acceleration diagram,

suppose that on the velocity diagram the velocity scale is

i inch =m feet per second, while the small intervals of time

are as before n seconds each
;
then an ordinate of i inch on

the acceleration diagram will represent an acceleration of

m/n feet per second per second.

In the figure m = 20, n = 2, so that the acceleration scale

would naturally have been %f
= 10 feet per second per second

to the inch, had it not been exaggerated for clearness to 2

feet per second per second to the inch.

20. Diagrams on a Displacement Base. Diagrams of ve-

locity and acceleration may also be drawn on a displacement

base, in which case lengths measured horizontally are pro-

portional to distance traversed or angle described
;
such a

construction is frequently very useful.

We have seen that on a time base the velocity curve for

a body having uniform acceleration will be a straight line,

passing through the origin of the two axes if the body has

no velocity when time is reckoned zero. Velocity is then

proportional to time. Suppose, however, that we consider

the way in which velocity varies with regard to displace-

ment in such a case.

Let a be the constant acceleration, v the velocity attained

from rest after moving for a time t
;
then by our definition

n
a = . Now the distance moved by the body will be numer-

ically equal to the average velocity ( ) multiplied by theW
... Vt 2S

time
;
thus 5 = or v = .

2 t

But v = at\ hence

2ast = 2as.

Therefore, the acceleration being constant, the displace-

ment varies as the square of the velocity. In the figure the
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acceleration is 1.5 feet per second per second, and the dis-

tance traversed in the first two seconds (during which a
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in i second, the velocity being 1.5 feet per second, a distance

of -5.X i = o-75 feet will have been covered. The diagram

of velocity and displacement shown in the lower part of

Fig. 22 will be found to express these relations, and

the velocity curve on a displacement base is not a straight

line, but a curve whose ordinates are proportional to the

square roots of the abscissas.

21. Acceleration Curves on a Displacement Base. Let a, c,

(Fig. 23), be two points on a velocity curve drawn on a

displacement base. The difference of the ordinates be repre-

sents the change of velocity. Draw the straight line ae, bisect

a'

FIG. 23.

it by the line df at right angles, and draw de perpendicular

ef be
to the axis of displacement. Then

ed
-T, since the triangles

abc, def are similar.

Assuming that the velocity changes uniformly, while

the moving body describes the distance represented by

a'6', let 5 be the space described in time t, while the velocity

changes from v
l
to vr Then we know that

s^+^-t and t---.
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Again, the acceleration

,

hence

a _(v2
-v

l (v3+ v
1 )

*$&

But in the figure aa' = vv cb
f = v

2 ,
so that v

2
v

1
=

be,

-1 = de, and s=ab\ thus
2

bcXde ,

acceleration =--- =
e/.

ao

Actually, of course, the velocity in general does not

change uniformly; we may, however, take a indefinitely

close to c, so that the straight line ac becomes a tangent to

the velocity curve, and df becomes the normal to that curve,

while ef is the subnormal at d and represents the accelera-

tion.

We find, then, that in the case of a velocity curve drawn
on a displacement base the subnormal at any point repre-

sents the acceleration. It only remains to determine the

scale on which, for example, ef represents the acceleration

ate.

Let the scale for velocity be i inch =m feet per second,

while the distance scale is one inch = n feet. Let ab, be, de,

and ef be measured in inches. Then, numerically, v
2

v
l
=

feet per second
,
-4-^ =deXm feet per second, and

2

s = ab X n feet. But wTe have just seen that

1 4.-acceleration =
SX2

abXn

.

/ being also measured in inches.
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In Fig. 24 is given the curve of velocity for a cable-car

from starting to stopping on a run of 200 feet, and from it

the curve of acceleration has been drawn, the construction

for one ordinate being shown. Note the high positive accel-

eration at the start, indicating a considerable jerk, followed

(after the first 35 feet) by a small and variable value of the

acceleration, sometimes positive, sometimes negative. The

stoppage of the car is accomplished in the last 35 feet,

and is shown by the negative acceleration or retardation

during that portion of its travel.

As originally drawn, the velocity scale was i inch = 5

miles per hour = 7.33 feet per second, while the distance scale

was one inch = 50 feet. Accordingly the acceleration scale

was i inch = ^^ ^^ =
1.075 ^eet Per second' per second,

; 5

or o. 73 2 mile per hour per second. The greatest acceleration

is then about 3.3 miles per hour per second, and the greatest

retardation about 2.2 miles per hour per second.

It should be noted that the curve of velocity on a displace-

ment base, when acceleration is constant, is a parabola, this

being the curve one of whose characteristic properties is

the constancy of the subnormal.*

22. Polar Diagrams of Displacement, Velocity, and Ac-

celeration. Besides employing the methods just given for

drawing curves of displacement, etc., it is often useful,

especially in considering periodic motion (in which the same

circumstances or conditions as to velocity or displacement

repeat themselves at regular intervals of time), to draw

diagrams in which a radius vector represents displacement,

velocity, or acceleration, while the angle turned through by
such a radius is proportional to time.

In Fig. 25 suppose that a line ON turns about the point

0. starting from the initial position OM ;
the angle 6 it has

described, when it has reached any position such as OA , being

proportional to an interval of time t lt during which a body
* See Fig. 22.
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U

FIG. 24.
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whose motion we are considering has moved to a distance s
l

from its starting-point. Mark off a distance OA =slm Then

a curve, such as NAB, drawn through successive positions

FIG. 25.

of A, is a polar diagram of displacement for the body con.

sidered. Let OB=s
2 ,
while the angle BOM = t

2
.

Then the average velocity between the times ^ and t
2
will

be represented by^^ -
-^L. Making OC-OA.

we have, therefore,

EC As
average velocity

angle BOA Ad

Join AC, and draw the straight line BA. Now if A1

is

a very small angle, the length of the straight line AC does not

differ sensibly from that of the arc of a circle of radius OA
,

so that we may sav that if Ad is small,

As ^BC.AO
J0~ AC

'
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Bisect AB in D, and draw OD, DE, OE, respectively

perpendicular to AC, AB, BC, so that the triangles BCA,
BC _EO
AC~ DO andEOD are similar; then

Next suppose that the interval of time represented by
AO becomes indefinitely small, so that the points B and A
coincide, and AB becomes a tangent to the curve. Jsand
AO will both become infinitesimal in magnitude, but their

ratio (which now represents the velocity the body has when
a time represented by 6 has elapsed) is finite, and its value

r ... f
is measured by the limiting value of when AO=DO.

FIG. 26.

This is of course OE. Hence the velocity is measured by
the length of OE when taken to the proper scale and drawn

perpendicular to OA, and to find the velocity correspond-

ing to any point A on a polar displacement diagram, we
draw a normal to the curve, and find its intercept OE on a

line drawn perpendicular to the radius vector OA. By
carrying out this construction for a number of points and

marking off values of OE along OA (as at OF, Fig. 26) in
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each case, we find points on a new curve, QFt
F

2 , which

is in fact a polar velocity-time diagram.
The reader will now be in a position to see that by repeat-

ing the same construction with the new velocity curve a

further diagram is obtained, that of acceleration; since

acceleration has exactly the same relation to velocity that

velocity has to displacement. In this case, of course, the

quantity represented by a line drawn in the same way as OE
above is the rate of change of velocity with regard to time.

We may next study son ve examples of such diagrams.

Fig. 27 represents a polar diagram or curve of dis-

placement, in which distance increases uniformly with

time, as shown by the fact that QO-PO=PO-NO, if the

angle QOP = angle PON, and so on. The curve ONPO is

of course an Archimedean spiral. It may be proved that

the length of the intercept OE by the normal DE on a line

OE through perpendicular to the radius vector is con-

stant whatever the position of D * on the curve. This

length OE has been shown to represent the velocity, and

accordingly in this case the velocity diagram will be a circle

with radius OE, and the acceleration will be zero, since the

velocity is uniform. In the drawing, if the displacement
scale is as shown, and the time scale is 90 = 10 seconds, the

velocity of the body is i foot per second. To determine the

velocity scale of such a diagram we need only reflect that

* The polar equation to the spiral of Archimedes is r = ofi ;

hence 6 = - and = .

a dr a

If be the angle which the tangent makes with the radius vector,

tan = r.

Thus tan ( = .

Now the angle between the normal DE and a line OE perpendicular to the

radius vector is <p. Hence OE = = r. = a = constant.
r
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the velocity is numerically . If the displacement scale
at)

were i inch = 3 feet, a velocity of i foot per second would

be represented by a length of one third of an inch

divided by the angle representing i second. In this case

FIG. 27.

90 represents 10 seconds of time, so that i second of time

would be denoted by or 0.157 radian. Hence unit veloc-
20

ity would be represented by - =2.12 inches, and the

velocity scale would be i inch =0.471 foot per second.

23. Diagrams for Simple Harmonic Motion. In the

following chapter we shall frequently meet with cases in

which bodies have periodic motion in a straight line, either

exactly or approximately harmonic in character. We
define simple harmonic motion as the motion of a point which

is the orthogonal projection on a straight line of another

point moving uniformly in a circle, termed the auxiliary-

circle. The radius of the auxiliary circle is called the ampli-
tude of the motion. Such motion can be conveniently
studied by means of polar diagrams; the engineer, for

example, often employs such diagrams to elucidate the

action of the slide-valve of a steam-engine, for the valve
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has very nearly such a motion as has been defined above.

In Fig. 28 let AOB represent the path of a point having

FIG. 28.

simple harmonic motion; we wish to draw diagrams of

displacement, velocity, and acceleration for this point. AO
is the amplitude of the motion, AmBq is the auxiliary circle,

and, according to our definition, LMNP, etc., will be posi-

tions of the point after the lapse of times proportional to

the angles AOl, AOm, AOn, AOp, and so on. It is plain,

then, that a polar time-displacement diagram can be readily

drawn by marking off along each radius a distance equal to

the corresponding displacement of the vibrating point from

its mid-position. Thus OL' has been made equal to OL.

It should be noticed that during each revolution of the

rotating point round the auxiliary circle, its projection
travels from A to B and back again, so that twice during
each period the displacement of the vibrating point will be

zero, while at the same time the velocity will have its

greatest value.

The period is of course the time of a complete revolution of

the point round the auxiliary circle , During one half of this

time the vibrating point has a positive velocity, i.e., is mov-

ing in one sense, say from right to left, while during the

remainder of the period the velocity will have a negative

value.
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The displacement diagram is drawn by obta.ning a series

of such points asL
',
where OL f = OL

;
the locus of such points

is easily shown to be a pair of circles touching the auxiliary

circle and each other. Taking the point L', for example,

join L'A . Then in the triangles OIL, OAL' we have OL' = OL
and 01 = OA ,

while the angle 10A Hte common to both. Hence
the triangles are equal in all respects, and the angle OLA is

a right angle. Therefore the point L lies on a semicircle

drawn on OA as a diameter, and the complete locus of L' is

a pair of circles, as shown. The radius vector OL repre-

sents the displacement of the vibrating point at a time

represented by the angle between the radius vector and the

initial line OA .

Having given such a diagram of displacement (Fig. 29),

let us apply to it our construction for determining velocity.

At any point D the line DE is drawn normal to the curve of

displacement, and is cut by OE where the angle EOD is a

FIG. 29.

right angle. Accordingly, when the length OE is marked off

at E! along OD we get one point on the velocity diagram.

Plainly, in this particular case, any radius vector of the ve-

locity diagram, such as OE'
,
is equal in length to the radius

vector of the displacement diagram which makes an angle

of 90 with it, and it follows that the velocity diagram will
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also be a pair of circles, as shown in the figure. Their axis is,

however, at right angles to the axis of the displacement

diagram, the maximum velocity being reached when the

body is at the middle point of its path.
On constructing the diagram of acceleration, we find

that it also takes the form of a pair of circles and coincides

with that of displacement. The scales of the two diagrams
are of course not the same, but it follows that in simple
harmonic motion the acceleration at any instant is propor-
tional to the distance of the vibrating point from its mid-posi-

tion, a fact which can also be readily proved analytically.*

Fig. 30 gives the linear and polar diagrams of displace-

ment, velocity, and acceleration for a simple harmonic

motion of which the amplitude is 0.75 foot, while the period
is % second. This corresponds approximately, but by no

means exactly, to the motion of the piston of a steam-engine,
1 8 inches stroke, and making 300 revolutions per rninute,

The linear diagrams have been plotted on a straight line

base from the radial diagrams ; they might have been drawn

by the methods of 18 and 19, in which case their

scales would have been different from those shown. In

general, polar diagrams are easier to draw than linear dia-

grams, and are more useful for cases of periodic motion

such as this
;
the linear diagrams are added for the sake

of comparison.
With regard to the scales of these figures, the scale of

time as originally drawn was 180 = 0.1 second (i.e., i second =

= 31.416 radians), while that of distance was i foot = i

inch. Accordingly unit velocity was represented by a length

of 2 inch. The velocity scale was thus i inch = 31.416
31.416

feet per second. Unit acceleration was represented by

See Perry, Applied Mechanics, p. 549.
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i foo t per second .0318
,
or - 7 = .001011 inch, hence the accel-

i second 31.416

eration scale was i inch = 988 feet per second per second.

SCALE OF TIME: 1 RADIAN = .oss SECOND

0.05 6EC. 0-05 SEC.

QO-05\ nnv_A_y

0.05 SEC.

o
DISTANCE

VELOCITY

\CCELERATION 9_

ACCELERATION

FEET

100 FT. PER SEC.

DISPLACEMENT AND ACCELERATIOh

0.05 C.I 0.15 0.2 0.25 SECOND

SCALE OF TIME

FIG. 30.

Note that the velocity of the rotating point round the

auxiliary circle is - -
=23.6 feet per second. The max-

imum velocity of the vibrating point as measured from the

diagram is 0.75X31.416 = 23.6 feet per second, thus agree-

ing with our definition of simple harmonic motion. The
maximum acceleration of the vibrating point will be found

to be the same as the radial acceleration of the point
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travelling round the auxiliary circle, namely ,
or

23.6X23.6

0-75
=-741 feet per second per second.

If an acceleration diagram on a displacement base is re-

quired, this can easily be drawn from the acceleration-

time and displacement-time diagrams, and it will be found

to take the form of a straight line, since, as has previously
been remarked, acceleration in simple harmonic motion is

proportional to displacement.

24. Relative Motion of Two Bodies each having S. H. M.

Cases arise in which it is necessary to find the relative

FIG. 31.

motion of two or more bodies having simple harmonic

motion, or we may wish to determine the motion resulting

from the combination of two or more simple harmonic

motions. We proceed to show how this is done.

It has been seen that every simple harmonic motion is

capable of being referred to a corresponding uniform motion

round a circle called the auxiliary circle. At any instant, for

example, the simple harmonic motion of the point L (Fig.

31) corresponds to the uniform motion round the circle

of the point /.

Let there be two points, L and M, having simple har-
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monic motion (of the same or different amplitude), and
let / and m be their reference points. If AOB is the line

on which the motion of / and m is projected, we define the

constant difference between the angles COl and COm as

the difference of phase in the two simple harmonic motions.

In Fig. 31 the point M.-has a motion differing in phase by
90 from that of the point L; in other words, Om con-

tinually lags 90 behind 01, and of course M lags behind L
to a corresponding extent. 'V.

In Fig. 32 let there be two points, L and M, having sim-

ple harmonic motions along AOB, whose amplitudes are

FIG. 32.

Ol and Om, and whose difference of phase is the angle 10m,
the period being the same for both motions. We wish to

find the relative motion of L and M, compounded of their

two simple harmonic motions.

Join Im and draw On equal and parallel to ml. Draw
nN perpendicular toAB.

Then the relative displacement of L and M is OM-OL,
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where OM or OL is reckoned negative when measured to

the left of 0. Now OM-OL=ML is the projection on AB
of the line ml. Also, ON is the projection on AB of the line

On, equal and parallel to ml. Thus ON =ML, since each

is equal to On cos NOn.
Hence in any position the relative displacement of M

and L is equal to the distance of the point N from the cen-

tre 0. But N has a simple harmonic motion of the same

period as that ofM and L, of amplitude On =ml, and differ-

ing in phase from that of L by the angle lOn. Thus if two

points have simple harmonic motions of the same periods

and along the same straight line, their relative motion is

also a simple harmonic motion, in general differing in ampli-
tude from either of the components, and also differing in

phase.
In Fig. 33 diagrams of displacement are drawn for two

simple harmonic motions of 2 seconds period, the amplitudes

being f inch and i inch, and the phase difference 60.

/2 SEC.

3 INCHES

The curves U and M' have ordinates proportional to

the displacements of the corresponding points along AB, as

represented by the motion of the points PQ round their

respective auxiliary circles. The resultant displacement
of L relatively to M is shown by the distance M'L' =0'N',
N' being above or below the line CD (along which time is

measured) according as L is above or below M along the

line AB.
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Thus the curve Nf
is drawn through points whose heights

above CD are equal to the heights of L above M at different

times. It will be found that these displacements are the

same as those of a point N moving along AB with a simple
harmonic motion of period 2 seconds, amplitude 0.9 inch,

whose phase is about 45 behin^ that of L and 105 behind

that of M.
The curves drawn in Fig. 33 are in fact sine curves,

since their ordinatesare proportional to the sines of angles
which are proportional to the abscissas. In general, on

compounding simple harmonic motions of different periods
we do not obtain a simple harmonic motion as a result, but

a more complex movement which is still, however, periodic-

A case of this is shown in Fig. 34, where two simple har-

FIG. 34.

monic curves, A and B (shown by dotted lines), differ-

ing in phase, amplitude, and period, are compounded, the

resultant curve C being shown by a full line. It is possible

to resolve the curve representing any periodic function into

a number of component sine curves of different phase, ampli-

tude, and period. In this way, for example, the complex
curve drawn by a tide-gauge is analyzed, and the periods,

amplitudes, and phases of its component tides are deter-

mined.

In the figure, for instance, the curve CC might represent
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the actual rise and fall of the water-level at a certain place,

due to the simultaneous effects of two tides, which, acting

alone, would respectively produce the fluctuations shown

by AA and BB. Distances measured horizontally repre-

sent time as before.

Such diagrams as those given above enable us to study

any periodic function, and they find many important ap-

plications in scientific work.

25. Composition of S. H. M. not along Same Line. Imag-
ine that a point, having simple harmonic motion in the

direction of a given line AB, has impressed upon it an-

other simple harmonic motion in the direction of a line CD
at right angles to AB. The motion of the bob of a simple

pendulum is very approximately simple harmonic. An

arrangement like that shown in Fig. 35 may be devised,

which will give to a pencil, P, a motion compounded of

those of two pendulums, Q and R, swinging in planes at

right angles to one another. .

FIG. 35.

It is easy to see what the path of such a pencil will be.

In Fig. 36 let 0123456 represent successive positions of the
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3
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12 3 456
PERIODS EQUAL, AMPLITUDES EQUAL

(I, SAME PHASE

b, PHASE DIFFERENCE 60

C,
" "

90

FIG. 36.

PERIODS 2:1, AMPLITUDES EQUAL
d, INITIAL PHASE DIFFERENCE

6,
" "

60

C,
" "

90

FIG. 37.

vibrating point measured along one line, and o iV3'4'5'6'
those measured along the other, equal intervals of time

being taken, and the periods of the two motions being equal.
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In the figure the movement from o to i or i to 2 is executed
in TV of a complete period. Now if both harmonic motions
have the same phase, points of intersection of the lines

drawn through i and i', 2 and 2', 3 and 3', etc., parallel to

the axes OA, OC, will give successive positions of the trac-

ing-point.' If there is a phase difference of 60, the tracing-

point will have moved as far as 2' along one line, while it

36 9 12 15 18

PERIODS 2:3, AMPLITUDES EQUAL
Cl., INITIAL PHASE DIFFERENCE

b,
" "

30

FIG. 38.

is still at o on the other
;
hence the fines drawn through i

and 3', 2 and 4', and so on, now' give the path, which is

seen to be an ellipse. Again, with a phase difference of

90 the path becomes circular Figs. 37 and 38 show the

curves resulting from the compounding of two simple

harmonic motions of equal amplitudes, having periods in

the proportion of 2 : i and 2 : 3 respectively, and various

initial phase differences The combination of motions

which have periods in any other ratio can readily be illus-

trated by the same method, and the reader will find it in-

structive to plot for himself some of the resulting curves.



"CHAPTER III.

PLANE MECHANISMS CONTAINING ONLY TURNING PAIRS.

26. Quadric Crank - chains. If we endeavor to make a

plane mechanism out of links containing only turning pairs,

we find that the least number of links with which this can

be done is four. A chain of three links so connected forms

FIG. 39.

an arrangement which is of value as a structure (a simple

triangular roof-truss), but is of no service as a mechanism,
since its parts can have no relative motion.

On the other hand, a simple chain of five or any greater

number of links connected by turning pairs is equally useless

as a mechanism, since the relative motion of at least two

of its links is not constrained, as has been shown in 3.

Let us consider, therefore, a chain of four links connected

by turning pairs whose axes are parallel. When the links

of this chain are of unequal lengths the smallest is called the

crank, and since the four links form a quadrilateral, the

chain has been called by Reuleaux * the quadric (cylindric)

crank-chain. The term '

cylindric
'

distinguishes this chain

Kinematics of Mach., 62-65.

70
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from the corresponding spheric chain, in which the axes are

not parallel.

In quadric crank-chains it will be convenient to dis-

tinguish between links having a swinging or partial turning

movement and those which can execute complete rota-

tions relatively to the fixed link in the chain.

The former links will be called levers, the latter cranks.

It is obvious that by altering the relative lengths of the

links we can obtain different relative motions, and hence

different mechanisms. From these, again, other different

mechanisms are produced by inversion of the chain.

27. Virtual Centres and Centrodes. Let abed, Fig. 40,

represent the four links of a quadric crank-chain. Each
of these links will have motion relatively to every other, and

hence we shall have six virtual centres. Four of these cen-

tres are readily identified as the axes of the turning pairs;

for instance, the virtual centre of c with regard to d, or of d

with regard to- c, is obviously the point 3, and may be

indicated as O cd or O dc . In the same way we have O ad , ab ,

and Obc; all these points are in fact permanent centres as

regards their own pair of links. Remembering that for any
three bodies having plane motion the three virtual centres

lie in one straight line, it is easy to see that Oae must lie at
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the join of the straight lines drawn through O ab and O
bc ,

and through O ad and O cd . In the same way O bd is at the

intersection of the lines O abO ad and O cbO cd .

Supposing b to form the frame or fixed link, it is seen

that since O ab and O bc are permanent centres, the centrodes

of a and c with regard' to .b are .points, namely O ab and O bc
.

FIG. 41.

The centrode of d with regard to b is the locus of Od ^ and

takes the form of a curve having four infinitely distant

points; portions of it are readily drawn by finding a

series of positions of Odb corresponding to successive posi-

tions taken up by the three Jinks a, c, and d. In a similar

way may be obtained the centrode of b with regard
to d (supposing d to be the fixed link). The curve PQRS
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in Fig. 41 represents the centrode of d with regard to b
;
the

construction for two points on the curve is shown.

28. Angular Velocities. It is frequently of importance,

having given the angular velocity, say, of the link a, to find

02 4 6 8 10 12 FEET

10 RADIANS pen SEC.

FIG. 42.

that of any other link, say c, or, in other words, to determine

the angular velocity ratio of the chain. This can be very

simply done by construction.

In Fig. 42 let ABCD represent the mechanism, AD being
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the fixed link, and the uniform angular velocity of CD being
known. It is required to determine the angular velocity
of AB for any position of the mechanism.

Draw DE parallel to AB, and cutting BC, or BC pro-

duced, in E. With centre D and radius DE mark off DF

FIG. 43.

along DC. Then DF represents the angular velocity of c

on the same scale as that on which AB represents the

angular velocity of a, and if a series of points such as F
be obtained, the curve FF

V
F

2
G . . . drawn through them

will form a polar diagram of angular velocities for c and a.

To prove this construction, let co
cb ,

w ab be the angular

velocities of c and a respectively with regard to b. In Fig.

43 find O db ,
the intersection of AB and DC at G, and draw

DE parallel to AB, meeting BC in E.

Since the link d is turning for the instant about G, we
must have

linear velocity of B _GB
linear velocity of C

~~

GC'

Now cb

linear velocity of B
AB

and
linear velocity of C

CD
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a*, linear velocity of B CD
hence = ^ ; r- 7-^ -r-^.

a>ab linear velocity of C AB

CD.GB
~AB.GC

But by construction the triangle BGC is similar to the

triangle EDC ;
hence

GB ED
GC~DC

oj
b _CD.ED_ED

Thus if AB represents the angular velocity of a with

regard to 6, ED represents on the same scale that of c with

regard to b.

Fig. 42 gives such a velocity diagram, drawn to scale, for

the beam of a beam-engine when the crank rotates uniformly.
For comparison the circle of radiusDH =AB has been drawn,
so that for any radius DGH the intercept DG represents
w

cb , just as DH represents w ab . The polar curve of velocity
is shown by a dotted line.

The distances taken are :

CD = 4 feet
;

DA =21.5 feet.

When the crank is in the position DH the angular

velocity ratio is

or at that particular instant the beam is swinging with 0.438
the angular velocity of the crank. If the crank rotates
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uniformly at 60 revolutions per minute or 6.28 radians per

second, in the position AB the beam is moving with an

angular velocity of 6.28X0.438 = 2.75 radians per second.

From the curve of angular velocity thus obtained we

might draw the curve of angular acceleration by the con-

struction described in '22. Notice that the construc-

tion just described can still be applied in positions of

the mechanism where O
bd

is inaccessible, i.e., when AB and

CD are nearly parallel, and when the relative angular

velocities, therefore, could not be found from the position

of the virtual centres.

29. Inversions o; the Quadric Crank-chain. In the par-
ticular example of the quadric crank-chain just examined,
the lengths of the links are such that while the link a exe-

cutes complete rotations with reference to b or d, c only

swings, a is then a crank, c a lever, and if the link b is the

fixed one, the resulting mechanism is called the lever crank-

chain.

In order that a may execute complete rotations with

regard to b it is necessary that a + b^ c+ d, while also

a + d ^.c }-b, a being the smallest of the links.

With these proportions let us see the result of inversion

of the chain. On considering the relative motions of the

links we find that the motion of a relatively to b or d is that

of complete rotation, while with regard to either of the

FIG. 44.

same links c only swings or performs partial revolutions.

As has been already pointed out, inversion can make no
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change in the relative motions of the links, and hence the

mechanism will remain a lever crank- chain whether b or d

be the frame (or fixed link).

On fixing a, however, as in Fig. 45, a new mechanism

is obtained which may be called the double crank, inasmuch

as both b and d can now execute complete rotations about

the axes of the pairs ba and da.

This mechanism is used in practice as a drag-link coup-

ling, 6 and d being represented by the discs keyed on to

the two shafts, a by the frame containing the bearings,

and c by the drag-link connecting the pin on d with that

on b. The mechanism is also employed in the construction

of feathering paddle-wheels.
When used for this purpose the object is to cause the

floats to enter and leave the water edgewise, (so as to avoid

splashing,) while remaining vertical at the bottom of their

travel.

Thus suppose A,B,C, Fig. 46, to be points on the path
of the outer edge of a float, AC being the water-line. The

steamer has a certain speed relatively to the water, so that

a point A on the wheel is moving horizontally with a velocity
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AD in common with every other point on the vessel, the

length of AD thus representing the speed of the ship to any
convenient scale. In virtue of the rotation of the wheel, .-1 has

also a linear velocity (represented by AE to the same scale),

relatively to the ship ;
therefore the real direction in which

1000 2000 30i/0 4000 FT. PER MIN.

FIG. 46.

A moves relatively to the water is AF, the diagonal of the

parallelogram AEFD. The floats then at entrance and

exit should lie in the positions AF and CH, while the float

in its lowest position should evidently be vertical, as at EG.

The floats are pivoted at their centres to the framework of
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the wheel and have attached float-levers KL, MN, OP.

The ends L, N, and P are all connected by radius-rods to an

eccentric-pin, generally fixed on the sponson-beam of the

paddle-box. The centre of this pin is of course at Q, the

centre of the circle passing through N, P, and L, while R
is the centre of the wheel itself. It will be seen that the

paddle-wheel arm, the float-lever, the radius-rod, and part
of the ship's structure form a double-crank mechanism,
thus giving the floats the desired movement. Fig. 46 is

drawn to scale from the following data :

Speed of ship 21 knots = 2026 feet per minute.

Diameter of wheel (ext.) 18.5 feet.

Revolutions per minute 48.

Breadth of floats 3' o".

Immersion of lower edge 3' 6".

Length of float-levers 3' o".

Speed of outer edge of float 2790 feet per minute.

FIG. 460.

Fig. 460 is a drawing of the arrangement of an

actual feathering paddle-wheel. The reader will have
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no difficulty in recognizing various links in the double-crank

mechanism.

Next suppose c (Fig. 44) to be the fixed link. Remem-

bering that the relative motions of b and c and d and c are

partial and not complete rotations, we see that a third

mechanism, the double lever, is tfie result of this inversion.

The double-lever mechanism is shown in Fig. 47, and
such an arrangement finds an application in certain approx-
imate straight-line motions (compare Fig. 566).

The result of the various inversions of the quadric crank-

chain may be summarized as follows :

Fixed Link. Mechanism.

a Double crank.

b Lever-crank.

c Double lever.

d. Lever-crank.

The four inversions have thus given us three different

mechanisms.

Certain special cases of the quadric crank-chain have

peculiarities which are of interest. Suppose that the

lengths of the links are such that either a+ b=c+ d or

a+ d = c+ b, b being the fixed link. This condition is shown

in Fig. 48.

As we have seen, it is still possible for a to execute

complete rotations, but it will now be found that c can swing
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on either side of the fixed link b. We obtain one position of

the chain in which all the links are in a line, and the angle

through which c can swing is then doubled. This condition is

expressed by saying that the mechanism passes through

FIG. 48.

a change-point when all the links are in line, and for any

given position of the link a the mechanism can assume

either the position shown by the full lines or that shown

by the dotted lines in the figure.

30. Change-points and Dead-points. A change-point

may be defined as a position of a mechanism in which such

a want of constrainment occurs that it is possible for the

arrangement to transform itself into another mechanism, or,

in some cases, into a pair of elements.

A very familiar instance of such a change-point occurs

in the quadric crank-chain when of the form known as

parallel cranks; that is, when a and c are equal in length,

and considerably shorter than b and d, which are also equal

This is of course a particular case of the condition illus-

trated in Fig. 48, and is shown in Fig. 49.
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At the instant when all the links are in a line it becomes

possible for . the mechanism abed either to take up such a

form as abc'd' or to continue its motion in its original form.

The mechanism in question is of common occurrence in

locomotive engines having coupled driving-wheels, and the

necessary constraint at the change-points is provided by
duplicating the chain, namely, by arranging another pair
of cranks and a coupling-rod on the other side of the engine,

so placed that the change-points of the two :chains do not

occur at the same time. Other methods of obtaining a

similar object will be found discussed in a later chapter.

FIG. 49.

By the term dead-point in a mechanism is meant a

position of the various links such that one. of them directly

opposes itself to the action of the forces tending to pro-

duce motion. The term was first applied by Watt to those

positions of the crank and connecting-rod in a steam-engine
in which the axes of three turning pairs lie in one plane,

so that a force applied to the piston is not able to cause any

torque on the shaft. It is plain that, in the absence of some

means of overcoming this difficulty, the further motion of

the chain becomes impossible, and the chain may be re-

garded as incomplete. The occurrence of dead-points must
not be confused with that of change-points, although they

may, and often do, occur together.

It is important to note an essential difference between

dead-points and change-points. The occurrence of a dead-

point depends on the particular link to which the driving

force is applied, and on the manner of its application. For
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instance, in the lever-crank mechanism of Fig. 42, if the

crank be turned by the application of a continuous torque
to its shaft, no dead-point exists. In the very same

mechanism, however, if the driving effort be applied to

the lever c (as in a beam-engine), dead-points occur twice

in each revolution of the crank.

A change-point, on the other hand, is caused by the con-

figuration of the chain itself, and is present whichever link

is fixed, so long as the chain is the same.

31. Special Forms of Quadric Crank-chain. Suppose
in the quadric crank-chain that we make a = b and c =d

;
we

then obtain a chain called by Professor Sylvester the kite,

from its form. When one of the links is fixed, and the

motion examined, it will be found that there are two change-

120

10

FIG. 50.

points. Thus, in Fig. 50, imagine that a rotates in the direc-

tion of the arrow, b being fixed. When the joint 4 coincides

with 2 the chain becomes, for the instant, a turning pair,

having its centre at 2, c and d rotating together. If a con-

tinues its motion for another complete rotation, another

change-point occurs, the chain having passed through the
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positions i, 2, 6, 7 ; i, 2, 8, 9 ; i, 2, 10, n ;
and so on, until

the position i, 2, 12 is reached. If proper restraint is

applied at the change-points, so as to prevent c and d rotat-

ing together, we see that for one complete rotation of c, a

will have made two revolutions.

The kite finds its principal application in certain

straight-line motions,* some of which will be presently

discussed.

FIG. 51

A quadric crank-chain in which opposite links are of

equal lengths is employed (with the addition of a fifth fixed

link) for copying purposes under the name of a pantagraph .

Let OABC, in Fig. 51, represent such a chain attached

to a point on a fixed link at 0, and let E and D be any two

points fixed on AB and CB, so that OED is originally a

straight line.

* Kempe, How to Draw a Straight Line. Macmillan, Nature Series, 1877



PLANE MECHANISMS CONTAINING ONLY TURNING PAIRS. 85

The figure OABC is a parallelogram whatever the posi-

tion of the mechanism; hence the angles OAE, EBD are

always equal. The lengths of the links are invariable,

hence - =
-=^= for any position, so that the triangles OAE,Ah Bh,

DBE are always similar, the angle OEA -the angle BED,
and OED remains a straight line whatever the position of

the mechanism, as at OA'B'C' .

If we suppose a pencil to be attached to E, any figure

it describes will therefore be the polar projection of the

figure described by D
;
the two curves being similar and

similarly placed with regard to the pole 0. The ratio of

OE
reduction is of course -

. The fixed point need not be

at the join of the two links, but may be anywhere on any
link, so long as 0, E, and D are taken in one straight line.

If in the ordinary parallelogram we replace the bars AB,
BC by wider pieces of material, and then choose on these

pieces points P and Q such that the triangles PAB, BCQ are

similar, we obtain a mechanism called by its inventor,

Professor Sylvester, the skew pantograph (Fig. 52).

Join OP, OB, OQ. Then

PA_BC - PA_OA
AB~CQ OC~CQ"
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But the angles PAO, QCO are seen to be equal, there-

fore the triangles PAO, OCQ are similar and
OP OA AP

Further, the angle POQ =AOC-AOP- QOC
v,

"

=AC-(AOP + APO).
Produce OA to R

;
then

angle POQ =RAB -RAP =PAB = constant.

From the facts that OP and OQ are in, constant ratio

and include a constant angle, it is evident that the paths of

P and Q are similar but of different sizes, and one is turned

through the angle POQ with regard to the other.

FIG. 53-

The parallelogram linkage is also applied in other ways.

Fig. 53 represents the Roberval Balance in which a fifth
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link is added and the parallelogram is thus doubled. Dur-

ing the movement of the mechanism the distance moved

by a point on c is equal to that moved in the opposite sense

by any point on a. Accordingly if used as a balance it

does not matter where the weights are placed on the scales,

and the latter remain always horizontal.

32. Straight-line Motions. Under the name straight-

line motions may be considered mechanisms whose charac-

teristic feature is that one or more points in them travel

exactly or approximately in straight lines, without being

directly guided. Those contrivances which contain turn-

ing pairs only will be discussed here
; nearly all of them are

formed from the quadric crank-chain.

In the earlier days of mechanical engineering plane sur-

faces were not so readily produced as at the present time,

and straight-line motions, or parallel motions as they were

called, played an important part as substitutes for straight-

line guides. The linkage employed by Watt is shown in its

simplest form in Fig. 54, and is seen to be a quadric crank-

chain so proportioned that one point on the shortest link

describes a path of which certain parts are approximately

straight, the whole path being a kind of lemniscoid, or figure

of eight. Such a mechanism is now used as a guide for the

motion of the pencil of a Richards steam-engine indicator.

The mechanism consists of four links, the fixed link

c being usually the longest, while b and d are generally of

equal length.



88 KINEMATICS OF MACHINES.

This condition is not, however, necessary. Suppose
the proportions to be those shown in the figure. When the

mechanism is in such a position that 6 and d are parallel,

as shown by dotted lines in the figure, the virtual centre of

a with regard to c is at an infinite distance away, in a

direction parallel to b and d. At that instant every point
on a is moving in a direction perpendicular to its virtual

radius and therefore at right angles to AD and CB. We
wish to find a point on a which will describe & straight line

(approximately) during small displacements of the mechan-

ism from its dotted position. Such a straight line must
be at right angles to the parallel position of b and d, as we
have just seen.

Imagine that the mechanism is moved into such a posi-

tion as that shown by the full lines AD'C'B, b describing
a small angle J0, while d describes a small angle A

(p. The

position of the virtual centre ac being found at 0, it is evi-

dent that the point required on C'D* must be such that its

virtual radius is parallel to AD or CB
t
for if not, it would be

describing a line not perpendicular to those lines, and there-

fore not in a straight line with its original direction of motion.

If, then, we draw a line OE parallel to AD and cutting C'D'

in E, E is the point required. Draw C'F, D'G, perpendicu-
lar to OE. For an indefinitely small displacement of the

mechanism the link a may be considered as remaining sen-

sibly parallel to itself, so that DD' = CC' and

AD A<>

also for such a displacement is at so great a distance that

we may write OG = OF without sensible error
;
hence for

very small displacements

Ay _C'F _C'E
Ao ~WG~~WF;

AD C'E
Finally,
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so that E must divide C'D f
in this proportion if its path is

to be a straight line for small displacements. For larger

displacements the path departs considerably from such a

line.

It is better to proportion the lengths of the links so that

DC is vertical when AD and EC are parallel; in that case

the path of E will be approximately straight over a larger

range of movement.

The links b and d may be placed both on the same side

of a, as in Fig. 55. In this case E will be found to lie out-

FIG. 55.

side CD, but as before -_ =_. The figure shows one

half of the complete path of the point E, as well as two

positions of the mechanism.
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This arrangement was also used by Watt.

It may be shown that the part of the path of E used fof

a straight line is in reality wavy. Rules for designing Watt

straight-line motions, as well as other forms, are given in

Rankine's
"
Machinery and Millwork," 253 et seq.

A number of other approximate straight-line motions *

are derived from the quadric crank-chain. Among these

the most interesting are those of Roberts and of Tchebi-

cheff,t shown in Figs. $6a and 566.

. W///////////M

^ROBERTS' TCHEBICHEFF

FIG. 560.
FlG - 56*.

33. Accurate Straight-line Motions. The first geomet-

rically correct straight-line motion was devised in 1864 by
M. Peaucellier. It is shown in Fig. 57 and is a compound
chain of eight links of which

The links a, b, c, d, e, f form a kite-shaped figure known as

the Peaucellier cell. It has the following properties :
,

(1) A,D, and C must always be in one straight line.

(2) AB 2-BC 2 =AG 2-GC 2
(since AC and BE are at

right angles).

Hence AB 2-BC 2 = (AG+ GC)(AG-GC) =AC .AD.

Therefore AC.AD is constant.

* Burmester's Lehrbuch der Kinematik, 255 et seq.

f See Engineering, Vol. XVI, p. 284.
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Suppose the chain moved until the line AC coincides

with AF. Let / be the position of C, while H is the posi-
tion of D. We have

HAJA=DA.CA,

DA
=
JA'

Also, FH =FD=FA, so that H, D, and A lie on a semi-

circle.

FIG. 57.
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But in the triangles HAD, CAJ the angle CAJ is com-

mon, so that the triangles are similar, and the angle CJA is

equal to HDA, which is the angle in a semicircle. There-

fore CJA is a right angle. In the same way it may be

proved that for any other position of C the line drawn from

C to / is at right angles to AJ.
Hence all possible positions of C lie on a line drawn

through J perpendicular to AJ, and therefore C describes

a straight line.

Let us inquire what is the result of varying the lengths

of the links g and h. It is plain that by making h=o the

points A and F would coincide and C would describe a

circle of radius AC. From this it would appear probable

FIG. 58.

that by giving h suitable lengths less than that of g, we

might describe circular arcs of any radius from AC up to

infinity. If h be made greater than g, c will still describe

a circular arc, but it will be convex towards A and the

radius continually diminishes as g diminishes.

The locus of C may be proved to be a circular arc as

follows :
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In Fig. 58 we have, as before, e
2 a 2 =AC . AD. On FA

produced mark off AO =k
t
where

W-g*
'

and

Join OC. Draw OK, FL perpendicular to AC. Let the

angle CAF = a. Then

AD = h cos a -f Vg 2
/

2 sin
2
a,

from which

zh.AD

Again,

2-k 2 sm 2 <x-kcos a,

from which

2k. AC

From (i) and (2),

+ h*-g
2

__
OC 2 k AC

h~h.AD ~k.AC AC' k
'

AD OC 2-k 2

-
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"But T = T^-rh h 2-? 2

Thus OC=-^
2 ,

which is constant.
o

The locus of C is therefore a circle of radius

-^T2-- 2h 2-g 2

whose centre is at a distance k from A
,
such that

_fc(g -0)

Note that if / = g, k = <x> and R = ao
',

the locus of C is

then a straight line as in the Peaucellier straight-line motion.

If h< g and # > a, ! is positive ;
while \lh>g,R has a negative

value, and the circle is convex towards A . The mechanism

may thus be used conveniently for describing arcs of large

circles. A graphic method of determining the proper

lengths of links for this purpose has been devised by Pro-

fessor Elliott.*

Another compound chain containing only turning pairs,

and giving a geometrically correct straight-line motion,

is that of Bricard.t

It consists of six links,arranged as in Fig. 59, such that

the lengths

.

o

* MacLay, Mechanical Drawing, XLII.

j-
See Gomptes Rendus, Vol. 120.
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If the point A is to describe the straight line AK, bisect-

ing FG at right angles, the length DE must be constant and
ac

-equal to
b

'

This is seen to be the case from the following consider-

ations: If AF, AG, AD, AE, be joined, it is evident from

FIG. 59.

symmetry that the triangles ABF, AGG are equal in all re-

spects, so that the angles DBA ,
EGA are equal. The sides

AB, BD are equal to the sides AC, CE\ thus AD=AE.
Then the triangles ADF, AEG are equal and the angles
DAF and EAG are equal. Add to each the angle DAG,
then the angles FAG, DAE are equal. But DA =EA and
FA =GA, therefore the triangles FAG, DAE are similar and
T) T? A J~) AD
^=^r, or DE =FG.^. But in the triangles AFB t

r(j Ar Ar
BAD we have the angle FBA common, while by construc-

FB b AB

-.FB bAD AB and DE-FG
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For the required path of A, therefore, DE is constant and

a
equal to -Xc.

b

Further information on the subject of straight-line

motions will be found in the books and papers to which

references have been given. ^



CHAPTER IV.

SLIDER-CRANK CHAINS.

34. Slider-crank Chain. A very important chain is

obtained from the quadric crank-chain by substituting a

sliding pair for one of the turning pairs. It is obvious that

the links will undergo the same relative change of position
in Fig. 60 (b) as in Fig. 60 (a), although the lever chas been

replaced by a block sliding in a circularly curved slot of

the same radius as the original lever. The chain as thus

transformed may be called a cylindric slider-crank chain,

although this name is generally applied to the particular

case in which O cd is at an infinite distance and the block

slides in a straight slot. It is plain that the mechanism
of Fig.6o (c) maybe obtained from that of Fig. 60 (b) by con-

tinually increasing the radius of the pair cd until it becomes
infinite. The pair cd may have prismatic surfaces of any
form so long as the sliding motion is properly constrained

;.

thus, for example, c may be a hollow block sliding on a

prismatic rod d, Fig. 60 (c) . The slider-crank chain in its

cylindric form has of course plane motion, and is of special

importance, since its different inversions form amongst
others the mechanisms of various types of reciprocating

steam-engines.
The six virtual centres of the slider-crank chain are

easily found, exactly as in the case of the quadric crank-

chain, but O cd is always inaccessible. Fig. 61 shows the

centrodes of the links b (representing the connecting-rod
of a direct-acting engine) and d (representing the frame or

bedplate). The centrode of b with respect to d (i.e., if d

97
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is considered as the fixed, link) is shown by the full line
;
the

dotted curve represents the centrode described by Obd if b

FIG. 60.

is taken as the fixed link. The construction for one point
is shown in each case.

When d is fixed the link c represents the piston, piston-

rod, and cross-head of the same machine. The link a repre-
sents the crank, and b the connecting-rod. A point on the

link b between A and B describes an oval curve with refer-
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ence to d, the shape depending on the position of the point

selected, and on the ratio of the lengths of crank and con-

FIG. 61.

necting-rod. This fact is utilized in the design of certain

valve-gears.

35. Displacement, Velocity, and Acceleration of Cross-head

in Direct-acting Engine. (First Inversion of Slider-crank

Chain.) One of the most important problems in con-

nection with the slider-crank chain is the determination of

the velocity and acceleration of the link c, Fig. 60, suppos-

ing d to be fixed, and a to rotate with uniform angular veloc-

ity. This is approximately the case in a direct-acting steam-

engine, where c would represent the cross-head and b the

connecting-rod.
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It is in general most convenient to deal with these prob-
lems graphically, but we shall first give an analytical inves-

tigation.

FIG. 62.

In Fig. 62, suppose the line of stroke AO to pass

through C, the centre of the crank-shaft. Let BC (the

AB
throw of the crank) =r, and let =n, so that the lengthBC
of connecting-rod = nr =AB. When the crank makes any
angle 6 with the centre line AC, let x be the distance of

the cross-head A from 0, the middle of its stroke. Draw
BD perpendicular to AC, and mark off AE=AB. If ^ is

the angle of obliquity of the connecting-rod,

sin 6

I
sin < = and

COS
<f>
= -
n

sin 2
0.

Now x=AC-OC=AC-AB
=CD+DA-AB
= r cos 6+ nr cos

<p nr

= r (cos 6 n + vV-sin 2

0) (i)

This gives # in terms of the crank angle 6. It is to be

noticed that when 0*=- the cross-head is not at the middle
2

of its stroke, but at a distance
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the negative sign indicating that A is now to the right of

O, Fig. 62.

In the case of a cross-head having simple harmonic mo-
tion we should have simply

x = r cos 0.

The term r(Vn
2 sin

2 6 ri) in equation (i) thus gives

what is called the
* '

error due to obliquity
' '

of the connect-

ing-rod. Its values for 6 =- are shown below for some usual

values of n.

n= 4 5 6

\/n 2 sin
2 6 n= 0.13 o.n 0.09

The error due to obliquity is thus seen to diminish rap-

idly as n increases.*

Next, to determine the velocity of the piston at any
instant we differentiate x with regard to time and obtain

dd f . 2 sin 6 cos 6 ~]= r - sm0-f-== r
dtL A* 2 -sin 2

tf-J2\A* 2 -sin 2

This is not very convenient for use in practice, but for

ordinary values of n we may write without large error n

instead of Vn 2 sin 2
6. For example, if =-, and sin 6 has

2

its greatest value,

\/n 2 -sin 2 =
3.87 4.89 5.91

when n= 4 5 6

Further, we may write V
c ,

the linear velocity of the crank-

* For a discussion of the problem of the connecting-rod see Hill, Min. Proc.

Inst. C. E., Vol. CXXIV, p. 390. Also consult Unwin, Min. Proc. Inst. C. E.,

CXXV, p. 363, and a paper by G. A. Burls, Min. Proc. Inst. C. E., Vol. CXXXI,

P- 33&-
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pin, instead of r-=-
y and, omitting the negative sign, which

simply shows that x diminishes at first while 6 increases, we
have very approximately for the velocity of the piston or

cross-head

n 0+' ( 2 )
2H ]

As an example, suppose an engine 1 2 inches stroke running
at 250 revolutions per minute, the length of connecting-rod

being 3 feet. The crank-pin velocity will be
2 5 3- T 4 =

oo

13.08 feet per second. When # = 45, the value of n being

6, we have, from equation (2),

^ = 13.08(0.70711 + 0.08333)
= 13.08X0.79044
= 10.340 feet per second.

If the velocity were calculated from the accurate expression

previously obtained, we should get

1^ = 13.08(0.70711.

\ 2\/36-o.49987
= 13.08X0.79103
= 10.348 feet per second.

The approximation, therefore, has led to an error of only
0.008 foot per second in this case.

Proceeding to determine the acceleration of the piston or

cross-head for any crank angle, we find very approximately
from equation (2), remembering that V

'

c
is constant,

XT dd V
c ^Now -j-

= c-
;

thus
at r

acceleration of piston or cross-head = 'n cos 0+
COS 2

). (3)
r \ n )
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26
The following table gives the value of cos 6+ cos for

different values of 6 and n.

B.
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link, is easily found at the intersection of the virtual radii

of the points A 'and B. Through C draw a line perpendicu-
lar to AC, and therefore parallel to AD, and produce AB
to meet it in E. Then the triangles ADB, ECB are similar.

Now the angular velocity of AB about D is measured

V ' V i*

either by the ratio
j:
or by j-\

so that
A1J

V
e

BD CB'

In many positions of the mechanism D is inaccessible,

but E can always be found, and the relation just obtained

tells us that CE represents the velocity of the piston at the

instant for which the diagram is drawn, to the same scale

as that to which CB represents the velocity of the crank-pin.

It is generally most convenient to make a polar diagram
of piston velocity by marking off a series of points such as

E' (where CE' = CE) for a number of different crank posi-

tions, or, if required, a velocity diagram on a distance base

may be constructed by marking off the distance CE along

AD, so that a series of points such as E" are obtained, and

a curve drawn whose ordinate at any point is proportional

to the velocity of the piston when in that position. Such

diagrams have been drawn in Fig. 64, together with a linear

velocity diagram on a time base, so as to show the difference

between a simple harmonic motion and that which the piston

actually possesses. The example taken is that for which the

velocity and acceleration have been calculated in the last

section. In order to determine the scale to which the ordi-

nates of the curves represent the velocity, it is only neces-

sary to remember that if the length BC were i inch, the

velocity scale would be i inch = 13.08 feet per second, since

the crank-pin velocity is 13.08 feet per second. In the

figure the construction lines are shown for one position of

the mechanism only ;
in drawing such diagrams care should
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"be taken only to draw those portions of the construction

lines which are absolutely necessary, so as to avoid useless

complication. Of course accuracy in drawing is indispen-

sable if the numerical results obtained are to be reliable. A
line whose length is proportional to the piston acceleration

/
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as being proportional to the velocity of the point E along
CE at any instant while the engine is in motion, supposing
BE always to be in a straight line with AB.

Let this velocity along CE be U
Q

. The real velocity of

the point E, regarded as a point on the connecting-rod, is

in a direction perpendicular to D, its virtual radius. Call-

ing this velocity uv we see that ^may be resolved into two-

FIG. 65.

components, namely, u in a direction along CE, and %
in a direction along BE.

From C draw CF parallel to DE, and draw FG perpen-
dicular to AB. Then the sides FC, CG, GF, of the triangle

FCG are respectively perpendicular to the directions of uv uor
/""**/"'

Thus FCG is a triangle of velocities and =
,
or

u
i
FC

CG ^ . u. DE FC T . FC

u

But^
CG

,, .

DB-CB'
Before Wl

= and

u = V
c
-- = rate of change of length CE.

Now it has been shown that

piston velocity
=
V^ = CE. -^- ,

C.O
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and Ve
and CB are constant ;

hence it follows that the rate

of change of the piston velocity must be equal to

(rate of change of CE) X -^^ that is,

V V 2

piston acceleration = w - =

Thus to obtain the numerical value of the piston accelera-

tion we must multiply the length of CG (measured to scale

/V \
2

in feet) by
j

-
j

,
where V

'

c
is the crank-pin velocity in feet

per second and r is the crank throw, or radius of the crank-

pin circle, in feet.

Hence it follows that

CG _ acceleration of piston

or, in other words, CG represents the piston acceleration to

the same scale as that on which CB represents V
c

2

/r, the

radial acceleration of the crank-pin.

When drawing such a diagram as Fig. 65 it happens that

for many positions of the crank the point D becomes inac-

cessible. Accordingly some other construction must be

found to obtain the position of the point F, so that CG may
be determined for any crank angle.

Consider the triangles BEG and BAD.

Evidently
BC= _

BA BD'
r?/- RT?

But - =- = ^^,, because the triangles BDE, BCF are similar.

Therefore
BEBF

or BA.BF

Hence any construction which will make BE a mean propor-
tional between BA and BF will determine the point F.
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A number of such constructions have been given; of

these perhaps the most convenient in practice is that of

Kisch.*

FIG. 66.

On AB describe a semicircle AHB. With centre B and

radius BE cut the semicircle in H. Draw HFG perpendicu-
lar to AB, cutting AB in F and CG in G. Join BH, HA.
Then

BE = BH_
BH~BA'

But BE = BH. Hence BA.BF=^BE\ and CG represents

the acceleration.

The method of determining the acceleration scale of such

a diagram may be shown by a numerical example. Fig. 67

has been drawn for the engine for which the velocity of the

piston has been previously calculated, taking a crank angle

of 45. The crank-pin velocity being 13.08 feet per second
t

and the connecting-rod being 6 cranks in length, we have for

the acceleration of the piston at that particular crank angle

13.o8
2
/

, cos9o\acceleration = -
(
cos 45+

0.5 \ 6 /

_i3.o8X 13.08X0.70711

o-5
=

24.2.1 feet per second per second.

* See Zeitschrift des Vereines Deutscher Ingenieure, Dec. 13, 1890.

also by Klein, Journal of Franklin Inst., Vol. CXXX1I, Sept. 1891.

Given
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In Fig. 67 the actual length of the line CG, if the figure

were drawn the full size of the engine, would be 0.351 foot.

The radius of the crank-pin circle CB is 0.5 foot and repre-

X



UO KINEMATICS OF MACHINES.

represents the piston acceleration, we find, first, the piston

velocity represented by unit length of CE (in this case 26.16

feet per second) ;
then it follows that a change of length of

CE at the rate of one unit per second represents a change
of piston velocity at the rate of 26.16 units per second, or

a piston acceleration of 26. i'6 units;* But each unit of length
of CG has been shown to represent a change of length of CE
at the rate of 26.16 units per second, so that, finally, unit

length of CG represents a piston acceleration of 26. 16X26.16
units.

This relation may be expressed by saying that if the

engine were drawn out full size and the linear velocity scale

were i foot = w feet per second, then the acceleration scale

would be i foot =n 2
feet per second per second. In this

case, as in the case of all graphic methods of determining
velocities and accelerations, the manner of finding the

velocity and acceleration scales must be thoroughly under-

stood
;

if this is not done, the diagram becomes almost use-

less, since no numerical values can be obtained from it.

A number of other constructions for the piston acceler-

ation in the direct-acting engine have been devised.*

37. Angular Velocity and Acceleration of Connecting-
rod. To study the movement of the connecting-rod, adopt-

ing the same notation as in 35, we have, as before,

sin
sin <p

=
n

COS v = .

n

The angular velocity of the connecting-rod is the rate of

change of <p with regard to time, and we obtain at once

d(p cos 6 dd

* See a paper by Prof. Elliott, Engineering, Vol. LIX, pp. 587 and 711, and

Zeitschrift des V. Deutscher Ingenieure, Oct. 13, 1894.
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in

Since is the angular velocity of the crank, we have

angular velocity of connecting-rod = s
-

S
.

r \/V sin 2

Differentiating again to find the angular acceleration, we
obtain

For ordinary values of n it is sufficiently accurate to write

approximately
V 2

sin
angular acceleration = f- . . . (2 a)

r 2 vV-sin 2

Taking the same example as before, at a crank angle of 45

we have

sin 0=0.70711, n = 6, V
e
=

13.68, ^ = 0.5.

Thus \/n 2
sin 2 =

5.96 and cos = o. 707 1 1 . Therefore

1 ., 13.08X0.70711 ... ..

angular velocity
= -^-' =

3.11 radians per second,

and, from equation (2),

1 1 4.- !3-o8
2

0.70711
angular acceleration = --

. .0.087
0.25 5.96

= 80.2 radians per second per second.

Using equation (2 a), we should obtain 81.2 as a result.

The simple construction of Figs. 65, 66, and 67 gives us

the angular velocity of the connecting-rod. For

y
angular velocity of crank = ---,

and angular velocity of connecting-rod ==
=^-.
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EC BE

1 -4. f * A c

angular velocity of connecting-rod = -
.

If BE is taken at the length it would have were the engine
drawn out full size, BA =nr, and-

angular velocity
=BE .

^.
.

(Note that the real lengths of BE and r must be used,

measured in feet, V c being in feet per second.)

In Fig. 67, for example, BE scales 0.355 foot, hence the

angular velocity will be

-355 Xr-^- = 3.10 radians per second,
6X0.25

a result agreeing with the calculated value.

As regards the angular acceleration we have seen that

EC : CG : GF \\u^\u^\ u2
.

The velocity u2
is the rate at which the length BE is chang-

ing, and is therefore proportional to the rate of change of

the angular velocity of the connecting-rod. Hence it may
be shown (just as in the case of the velocity ii ) that

V 2

angular acceleration =EG
nr*

In our example (Fig. 67) EG is 0.350 feet; hence

13.08X13.08
angular acceleration = o. 3 50 X - -

6 X o.i 25
= 79.9 radians per second per second,

a result agreeing closely with that previously obtained.

Notice that when the crank angle is 90 EG becomes

and therefore, if =
,

2

1 * V 2 .nr V 2

angular acceleration = -

38. Angular Velocity of Cylinder in Oscillating Engine.

Second Inversion of Slider-crank Chain. The second inver-

sion of the slider-crank chain is that in which the link b
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(represented by the connecting-rod in a direct-acting steam-

engine) is the fixed link. This mechanism is known as the

swinging-block slider-crank and is employed as an oscillating

steam-engine, of which the link d becomes the piston and

rod, while b is the framework. The link c is the cylinder
and a is the crank, the cylinder swinging to and fro on trun-

nions as the crank-shaft revolves. We proceed to compare
the angular velocity of the cylinder with that of the crank,

the latter being supposed to rotate uniformly.
Let Fig. 68 represent this mechanism. The distance

AB is the length of the fixed link,

measured from the centre of the

cylinder-trunnions to the centre

of the crank-shaft, while BC is

the half-stroke of the piston, .--{-.

Let - - =n. Let the angle the

crank has turned through from

its lowest position be 0, <p being
the angle at which the centre

line of the cylinder is inclined to

AB. Then
CD sin

The angular velocity of the

cylinder is J~ ,
so that on differ-

entiating

~di~
<P
'~d6n-co^d'^dt

n cos 6i dd
*
(n-cos6)

2
'

75""'

AD 2 AD 2

But cos 2

<p
=

Thus ^ -

FIG. 68.

(n-co$6)
2

AC 2 AD 2+DC2

n cos 6i dO

n 2 2n cos O+i 'dt'
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From this we find by again differentiating

dt
2

(n
2-2ncos0+i) 2

\dt

which is the value of the angular acceleration of the cylinder

for any crank angle 6. *

Notice that since the angular velocity of the crank is

uniform, the cylinder executes its forward and backward

swings in unequal times. By assigning suitable propor-

tions this particular inversion of the slider-crank chain

may be utilized as a quick-return motion (see Fig. 72), by

FIG.

causing the swinging link c to actuate the tool-box, say, of

a shaping-machine, which can thus be made to perform its

return or non-cutting stroke at a quicker rate, and in less

time, than its forward or cutting stroke.

The velocity ratio of cylinder and frame may readily be

obtained graphically. The positions 'of the six virtual

centres of the mechanism are shown in Fig. 69. Let aj
<lb

represent the angular velocity of the crank with respect to
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the frame b\ we wish to find a>
cb . E (the virtual centre

of c with regard to a) is a point common to the two bodies

a and c for the instant considered. Its linear velocity may
be expressed either as w

cb xAE or as a> ab xEB. Hence'cb

OJ

ab

EB
AE'

Draw BF parallel to CE, and FG parallel to CB. Then

OJ
cb

coab AE AC BA'

5 FEET

5 RADIANS PER SEC.

FIG. 70.

and since BA is constant, the length BG is proportional to

the angular velocity of the cylinder. A polar diagram may
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be drawn by marking a distance BG' along BC equal to BG
and repeating the construction. This has been done in Fig.

70 for an oscillating engine in which the stroke is 3 feet and

the distance AB is 5 feet. At 60 revolutions per minute the

maximum angular velocity of the, cylinder is represented on

the diagram by a distance measuring 2.14 feet to scale, hence

its numerical value (the angular velocity of the crank being
2n radians per second) will be

6.28X-1-- =2.689 radians per second.

The angular acceleration may easily be obtained by con-

struction from the velocity diagram, as is shown in Fig. 71.

The value of the velocity and acceleration should be cal-

culated for one or two positions of the crank, as an exercise,

and compared with the diagrams.

Notice that the value of the angular-velocity ratio when
l9=o or i8ois

to ab r(ni)'Ve
ni'

Notice also that the angular velocity and angular acceler-

ation will be the same for the piston and rod as for the cylin-

der. It is easy to show that db = - = (Fig. 69) .

"ah CD AB
. Fig. 7 1 shows the angular velocity and acceleration

(in the same example) as plotted on a polar diagram (the

acceleration curve being found from the velocity curve as

in 22), and also shows the corresponding linear diagrams
on a time base, the scales being marked. The linear dia-

gram of acceleration could be obtained from the velocity-

time curve by the method of 19, but the acceleration scale

would not then be the same as that shown on the figure.

A number of problems dealing with velocity ratios and
accelerations in the oscillating engine have been worked
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out by Professor Elliott in a communication to Engineering,
Vol. LXIII, page 665, to which the reader is referred.

CRANK VELOCITY 8. 28 RADIANS PER SEC.

TIME

VELOCITY

ACCELERATION

DISTANCE

0.1 0.2 0.3
;

4 0.5 SECONDS

I 2 3 4, RADIANS PER SEC.

10 _20 RADIANS PER SEC. PER SE

3 FEET

FIG. 71.

A general method will be given later (Chapter V) by
which the linear or angular velocity or acceleration may be
found graphically for any point on* a link of a mechanism
of the kind discussed in this chapter.

A good example of the kinematic identity of mechanisms
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which at first sight appear to be very different is afforded in

Fig. 72. The links which correspond in the two cases have

the same letters attached. The sketch (a) represents the

oscillating engine, while (6) gives a diagrammatic view of

the corresponding quick:return motion. Both are derived

FIG. 72.

from the same inversion of the slider-crank chain. The

swinging link c has the same relative motions in regard to

the links b and d (with which it pairs) in the quick-return

motion as in the engine. The framing of the engine cor-

responds to the fixed framework of the machine-tool. The
rod R, which of course does not appear in the engine, com-

municates the variable motion of the swinging link c to the

tool-carriage. The crank-shaft of the engine is represented

by the disc a, to which rotary motion is imparted by the

driving mechanism of the tool (not shown).

39. Whitworth Quick-return Motion. Third Inversion of

Slider-crank Chain. Passing to the next inversion, we
now have a as the fixed link, and the resulting mechanism
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is one which was applied by Whitworth* as a quick-return
motion for the same purposes as have already been men-

tioned. It has been called by Reuleaux the turning-block

slider-crank chain.

The velocity ratio of the links b and d may be obtained

FIG. 730.

FIG. 73^.

exactly as in the case of the oscillating engine. In fact an

alteration in the relative lengths of the links a and b, Fig. 70,

converts the mechanism there shown into one not differing

in any essential particular from the quick-return motion

of Fig. 736.

* See Cotterill, Applied Mechanics, p. 108, 50.
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Figs. 73<s and 736 show this quick-return motion with

different proportions of the lengths of the links a and b. It

will be seen that while d executes complete rotations in the

first case, it only swings in the second case.

The relative angular velocities of b and d are easily found

by the construction shown in Fig. 9. Evidently if a is the

fixed link

aj d BD BA GAda _

w ba CD EA BA'

Thus if AB represents the angular velocity of the link 6,

AG represents that of d to the same scale.

Supposing the link b to have a uniform angular velocity,

the positions i and 2 are those in which the tool-box is at

one or the other end of its travel. Accordingly it is easily

seen that the times of the cutting and return strokes will

"be in the ratio . Hence in designing such a motion
a

we have only to proportion a and b so that r = cos a in the

Whitworth motion, or = cos <*- in the other form, where
ct

a has such a value as to make the desired ratio.
a

The times of the cutting and return strokes are often in the

ratio 2 : i or 3 : i.

The centrodes for the links c and a are found by similar

constructions to those already shown in Fig. 6 1 for the links

b and d, and are drawn in Fig. 74. The reader should con-

struct them for himself for the case shown (in which the

length of the link a is less than that of 6) ,
and also for the case

in which the link a is longer than 6, when the centrodes take

quite different forms.

40. Pendulum Pump. Fourth Inversion of Slider-crank

Chain. The last of the four possible inversions of the chain,

the swinging slider-crank, in which c is the fixed link, has
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only a very limited application in practice, but has been

employed as a small steam donkey-pump. It is shown

diagrammatically in Figs. 75*2 and 756, and is shown also

in outline in the second sketch in Fig. 74.

a FIXED FIXED

FIG. 74.

It is known as the "pendulum pump," from the motion

of the link b. The link c now represents the cylinders

(steam and water) and their connecting framework, while

d is the piston, rod, and plunger. The crank a takes the

form of a small fly-wheel, which rotates about O ab ,
while that

point swings along the dotted arc. The relative angular

velocity of b and d is easily found graphically, the virtual

centres being known. Let V = linear velocity of d; then,

since the link a is turning for the instant about E, we have

angular velocity of a -
Hnear velocity of point _ V

C.C,

and

linear velocity of point B = V .

BE
CE



122 KINEMATICS OF MACHINES.

Therefore

angular velocity of b = V .

BE
BAXCE
BA JV_

'BAXAD~ AD'

el

FIG. 75. FIG. 750.

The various inversions of the slider-crank chain may be

summarized thus :

Link Fixed. Name of Chain.

d Turning slider-crank

Resulting Mechanism.

Direct-acting engine

b Swinging-block slider- Oscillating engine. Quick-

c

41,

crank

Turning-block slider-

crank

Swinging slider-crank

return motion

Whitworth quick-return mo-
tion

Pendulum pump
Crossed Slider-crank Chains. The slider-crank chains

hitherto discussed have been arranged so that the straight

line in which O bc moves relatively to d passes through
O ad . If this is not the case, we obtain a further series of

mechanisms known as crossed slider-crank chains, shown

in Fig. 76.
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The crossed turning slider-crank has been used in certain

single-acting high-speed steam-engines, with a view of lessen-

ing the effect of the obliquity of a short connecting-rod

during the working stroke
;
the obliquity during the return

stroke is of course correspondingly increased. In such a case

the determination of the acceleration or velocity of the

CROSSED TURNING S.C. CROSSED SWINGING BLOCK S.C.

CROSSED TURNING BLOCK S.C. CROSSED SWIN

FIG. 76.

piston does not present any difficulty, as it can be carried

out by the constructions already given.

42. Double Slider-crank Chain. We consider next the

simple chain formed by two turningand two sliding pairs. It

has been already shown that from the quadric crank-chain the

slider-crank chain may be derived by substituting a sliding

pair for one of the turning pairs, such sliding pair being

equivalent to a turning pair of infinitely great radius. This

substitution may be repeated, and Fig. 77 shows the result

in the case where the directions of motion of the two sliding

pairs are at right angles, and where one link carries an ele-

ment of each of the two sliding pairs. Such a chain is called

a double slider-crank chain. The link b has now become

compressed into a block sliding in a slot formed in c.
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Since the relative motion of b and c is the same as if the

pair be were a turning pair of infinite radius, the velocity

ratios and accelerations in this chain will all be found exactly

as in the case of a slider-crank chain in which the link b is of

:

FIG. 77.

infinite length, i.e. when n = oo . Accordingly we may
write at once (supposing the link d to be fixed), with the

same notation as before,

oo = r cos 6,

and
linear velocity of c = V^ = Vc

sin 6,
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while

acceleration of c
V

cos 6.

Notice that if the crank rotates uniformly the motion of

c with regard to d is simple harmonic, and that the link b

has no angular velocity with regard to d.

Fig. 78 shows the six virtual centres of the chain. It is

plain that the centrodes of b and d are now altogether in-

accessible.

The distance CE is seen to be proportional to the linear

velocity of the link c, while CF is proportional to its linear

acceleration as given above; the scales are readily deter-

mined.

This inversion of the double slider-crank chain is fre-

quently employed in the construction of steam-pumps. The
link c represents the steam-piston
and pump-plunger, d the cylinder,

framing, and pump-barrel, and a

the crank-shaft. The total height
of the pump may be made small, on

account of the absence of a con-

necting-rod, thus making the ar-

rangement a very convenient and

compact one for certain purposes.
The linear and polar diagrams

of piston displacement, velocity,

and acceleration, supposing that

the angular velocity of the crank-

shaft is uniform, are precisely those

already given for simple harmonic

motion.

If the link b be supposed fixed

instead of d, the resulting mechan-
ism is the same as before, for the

reason that the relative motion of

b and a is exactly the same as

that of d and a. Thus on fixing 6 we still have the link c
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executing simple harmonic vibrations as the crank rotates

uniformly, but the direction of motion is now along the line

FB instead of FC (Fig. 78).

43. Elliptic Trammels. If c, the link containing one

element of each of the two sliding pairs, is the fixed link,

we obtain a mechanism' used for the purpose of drawing

ellipses, and shown in Fig. 80. The bar a, carrying an ele-

ment of each of the two turning pairs, now carries a mov-
able tracing-point ;

the blocks b and d slide in a pair of grooves

intersecting at right angles and formed in the link c.

FIG. 80.

The path of the tracing-point is easily seen to be an

ellipse, for, with the notation of Fig. 80, we have

Hence

sin 6=y/n,
cos 6 = x/m.

x 2
-v

2

This equation is seen to represent an ellipse having as

its centre and m and n as its major and minor semi-axes.

From the position of the point Oac (Fig. 81) it is evident

that the centrodes of a relatively to c, and c relatively to a,
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form a pair of circles of which the length of the link a is

respectively the radius and the diameter. Hence it follows

that the relative motion of a and c may be represented by
the rolling together of circular curves of the same sizes as

the centrodes in question a point to which attention is

again drawn (see 57).

\

T v
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FIG. 82.

FIG. 83.
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are angles in the same segment of a circle, they are

equal; hence if b turns through any angle OJB02 ,
d turns

through an equal angle 0)0T By attaching a shaft to

each of the links b and d we are thus enabled to communi-

cate rotation from one to the other with uniform angular

velocity ratio. Fig. 83 shows the form actually taken by

FIG. 840.

this mechanism when used as Oldham's coupling. The link

c becomes a disc having projecting feathers or keys on its

faces, these keys being at right angles to one another and

fitting into corresponding grooves on the enlarged ends of

the two shafts b and d. The link a becomes a frame carrying
the bearings of the two shafts.
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Precisely the same kinematic chain is used in the case of

the elliptic chuck, which was probably invented by Leonardo

da Vinci.

Figs. 84a and 846 represent this contrivance, seen from

the back, the face of the plate c to which the work is

attached being turned away from #iew.

The plate c has behind it two straight pairs of guides

at right angles to one another; the block b slides be-

FIG. 84^.

tween one of these pairs of guides, while the block d moves

between the other pair, which pass through slots cut for the

purpose in b. The block b is secured rigidly by being screwed

on to the nose of the lathe mandrel, with which it rotates.

The mandrel passes through an oval hole in the eccentric a,

which is clamped firmly (by screws which are not shown) to
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the lathe neadstock, in such a way that the distance BD be-

tween the axis of a and that of b can be varied as required.

That distance is the effective length of the fixed link in the

mechanism, and upon it depends the eccentricity of the

ellipse to be described.

It will be seen that this construction corresponds ex-

actly to the arrangement of Fig. 82. Accordingly it is

evident that a point at rest with regard to the link a (as the

point of a cutting-tool would be) will describe an ellipse on

a piece of work attached to, and rotating with, the link c,

just as a tracing-point attached to a (Fig. 80) was shown

to describe an ellipse with respect to c in that case. It

will be seen that the distance from the tracing-point P to

D (Fig. 846) is the semi-minor axis, while the length BD
is the difference between the semi-axes.

It is obvious that a number of fresh mechanisms may
be derived by changing the angle between the directions of

motion of the two sliding pairs ;
in this case the chain would

be known as a skew double slider-crank chain. Fig. 85

shows an example of such a chain, but space does not per-

mit of the discussion of such mechanisms.

FIG. 85.

45. Crossed-slide Chains. We proceed to consider the

chain derived from the slider-crank chain by introducing
a second sliding pair in such a way that each link contains

one element of a sliding and one of a turning pair. As
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distinguished from the chain just discussed (the double

slider-crank chain), in which one link contains elements of

each of two turning pairs, and another contains elements of

each of two sliding pairs, we may call this the crossed-slide

chain. It is essentially a crossed chain, just as the crossed

slider-crank was, because the straight line in which the centre

of one turning pair moves does not pass through the centre

of the second turning pair. One of its forms is shown dia-

grammatically in Fig. 86, and is occasionally employed for

FIG. 86.

working the rudder of large ships, under the name of

Rapson's slide. For this purpose it has the great advantage
that the leverage increases as the helm is put over. In the

figure the fixed link d represents the framework of the ship,

a the tiller and rudder-head, and b is a block sliding on a

and turning on c. The steering-gear moves the block c

between guides secured to d, and thus actuates the rudder.

The same mechanism is employed for working the valves

of duplex steam-pumps, in which each of the two steam-

pistons works the valve of the neighboring cylinder, and it

occurs again in a slightly different form in the arrangement
of the compensating cylinders used in the Worthington high-

duty pump for storing up the excess of energy exerted by
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the steam during the first portion of the stroke of the piston,

and restoring that energy during the later part (Fig. 87).

Here d is the pump framework, a a are the compensating

cylinders, rocking on trunnions attached to d
;
b b are the

plungers which enter the cylinders against pressure during
the first half of the stroke, and return during the later half

;

c is the pump-piston, rod, and plunger.

The virtual centres of the chain are shown in Fig. 88, and

6

FIG, 87.

the pair of centrodes corresponding to the relative motion

of b and d are shown in Fig. 89, construction lines being

given for one point on each centrode.

Certain velocity ratios in this chain are of importance ;

for example, the ratio of the angular velocity of the tiller a

to the linear velocity (V c )
of the block c relatively to its

guides.

AT IKF,

In Fig, 88 let the angle BAG =
; then, since Oaf is a point

common for the instant to a and c, as a point in c it is moving
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in a direction perpendicular to AC with velocity V
e

. Its

angular velocity (and therefore the angular velocity of a

V
in which it is a point) about A is therefore ^, which is

./IC

easily seen to be equal to

V' *"-- cos**

Hence if the block c has a uniform linear velocity, the angular

velocity of the tiller varies as the square of the cosine of the

FIG. 89.

angle of helm. It is this property which gives the apparatus
its value as a steering-gear ;

for it may readily be shown that

if a constant force be applied to c, the turning moment on

the rudder-head increases as the helm is put over; in

fact the turning moment varies as ^-n .

cos 6
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It is easy to draw a curve of angular velocity for the

link a. In Fig. 90 make AE' =AE and draw EC perpen-

dicular to AB. Draw EF parallel to CE'
t
then ~T^'->

therefore ^-^~
=
^r^, and

AE 2 AC
V

angular velocity of tiller = 2

Thus a series of points such as F will give us a polar

diagram of the angular velocity of the tiller.

FIG. 90.

Notice that in any position we may look upon V
c ,

the

linear velocity of the point B
f

along EB' ,
as being the result-

ant of two velocities, V
c
sin 6 along AB'

,
and V

'

c
cos at

right angles to AB' . The former gives the speed with which

the block b is sliding along a
;
the latter shows that the angu-

lar velocit of a is

ABf AE '

the same result as that obtained previously.
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Rapson's slide is only a particular case of the crossed-

slide chain. It may be noticed, however, that we obtain

the same mechanism whichever link is the fixed one, since

each link has on it an element of a turning pair and also an
element of a sliding pair.

46. Straight-line Motions Derived form Slider-crank

Chain. A number of straight-line motions have been de-

vised which are really slider-crank chains. In such mech-
anisms the line described by the tracing-point). is often only

approximately straight, and when it is exactly so, its straight-

ness depends upon the accuracy with which the flat surfaces

of the sliding pair have been formed.

To this class belongs Scott Russell's straight-line motion,

represented in Fig. 91. The link b in an ordinary slider-

crank chain is extended to E, and AB =BE = BC. It is then
evident that the angleACE is the angle in a semicircle, and
that the point E describes a straight line CE so long as A
describes a straight line AC.

With other proportions of the lengths AB, BC, BE,
approximate straight-line motions may be obtained. In

Fig. 92, for example, suppose A and E to lie on the straight
lines AC, EC, respectively; it has been seen that a point B
will describe an ellipse (shown by the dotted curve), of

which C is the centre, and AB and BE the lengths of the

semi-axes. A circle may be drawn so as to cut this ellipse
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in four points, as at P, Q, R, 5, and if we connect 5 and F, the

centre of the circle, by a rigid link, the path of the point E
will cut the straight line CD in four places, supposing
A traverses the straight line AC. By a suitable choice of

the point F, the circular path of B may be made to differ

FIG. 92.

very little from the ellipse during a considerable range of

movement, and the actual path of the tracing-point E will

nearly coincide with the straight line CE.

In the second inversion of the slider-crank chain, in which

b is the fixed link, a point on the link d may be chosen such

that its path is approximately straight.

Thus in Fig. 93*2 suppose that a straight line AB, of fixed

length, passes through a fixed point O, while a point C on it is

compelled to traverse a straight line DE. The curves de-

scribed by A and B are known as conchoids, and are shown

by the dotted lines. It is possible in a swinging-block slider-

crank chain to find a point P on the link d in such a position

that while the circular path of Oad coincides nearly with the
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part BBf
of the conchoid, and the centre of the pair be cor-

responds with the point 0, the path of the tracing-point

P will nearly coincide with DE. Fig. 936 represents a

model of such a mechanism, in which the point P is guided
in an approximately straight line.*

47. Chain Containing Sliding Pairs only. It is possible

to construct a closed kinematic chain containing only slid-

ing pairs. Such a chain consists of three links, a, b, and c

Of these b and c are blocks sliding on a common link a.

A projection on b slides in a slot cut in c, thus completing the

chain. If c is the fixed link, the chain will evidently be

* For discussion of a number of straight-line motions see Kennedy, Mechanics

of Machinery, p. 417.



SLIDER-CRANK CHAINS. 139

FIG.

FIG. 94.
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capable of being moved into such a position as that shown

by the dotted lines in Fig. 94.

Such a chain exists, for instance, in most arrangements

for adjusting bearings by means of wedges or cotters, as in

the double-adjustment plummer-block (sketched diagram-

matically in Fig. 95), in wr;ich the^

brass c has to be capable of slight

movement in the direction of the

arrow, to allow for wear, and is

pushed forward by drawing down
the wedge b. The pedestal itself

and its cap form the link a, and the

upward movement of the block or

wedge b is prevented by some form FlG 95
of force- or chain-closure (see Chapter VI).

A chain containing four links and having four sliding

pairs can also be devised, but, like the chain containing five

turning pairs, it is-not constrainedly closed.



CHAPTER V.

DETERMINATION OF VELOCITY AND ACCELERATION IN
PLANE MECHANISMS.

48. Velocity and Acceleration Determined from Virtual

Centres. It is often necessary to determine the magnitude
and direction of the velocity or acceleration of a given point

of a given link in a plane mechanism. Such a calculation,

for example, is frequently required if we wish to find the

forces acting on a part of a machine when in motion, with a

view to the correct proportioning of such a part to the work

it has to do.

We have already studied this problem in certain cases,

especially as regards the cross-head of a direct-acting steam-

engine; the question has now to be discussed in a more

general manner.

In a given mechanism, having given the velocity of a

point on one link, and having found the positions of the

various virtual centres, it is possible to determine the veloc-

ity of any point on any one of the links.

Take for example the beam-engine of Fig. 96, in which

we suppose V c ,
the velocity of the crank-pin, to be known.

It is required to find the actual linear velocity (i.e., the

velocity with relation to the frame or fixed link) of the

piston and rod b.

Let a be the fixed link, b the piston, d the beam, e the

connecting-rod, and / the crank.

First find O
b(, at the intersection of a horizontal line

through the beam centre O da and the line joining O bc and

Ocd . Note that Oba is at an infinite distance. Next find

141
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Ojs, draw a horizontal line through Oafy
and find its inter-

section with the line joining Odb and Odf. This point is Ob/.

FIG. 96.

All these centres are readily found, remembering that they
lie in threes in straight lines.

The point Obf is a point common for the instant to the

links b and /. Let the length of crank = r and let the dis-

tance Oaj . . .Ob/=m.
Then the actual linear velocity of the point 0,,f (consid-

/M*

ered as a point on the link /) must be V
C X ,

in a direction

perpendicular to the line OaJObf,
and this must also be the

velocity of the link b, since Obf is for the instant a point on

that link also. The same construction will give the

velocity of the piston for any position of the mechanism,

except when the crank is on the dead-centre.
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A similar method may be used in any case in which the

various virtual centres can be found, but is not always possi-

ble for all positions of the mechanism, because many of the

centres periodically recede to an infinite distance. This

fact considerably reduces its practical usefulness.

49. Method by Using Point-paths. The velocity of a

given point on any link may be most simply determined for

any given position of a mechanism by carefully drawing (to

.as large a scale as possible) the mechanism in two positions,

one slightly before and the other slightly after the given

position. The velocity of some one point of the mechan-

ism being known, the velocity of the given point is readily

found by comparing the displacements of the two points

in the short time supposed to elapse between the two posi-

tions drawn, the direction of motion being known from

the point-path on the drawing. It should be noted that

this method of finding the velocity required is not suscep-

tible of great accuracy, because the displacements whose

ratio is measured must be supposed very small, in order

that the result obtained may be as nearly as possible the true

velocity of the point when the mechanism is actually in the

given position. Hence the ratio of the displacements is

difficult to measure. The method is nevertheless often

used in practice.

As an example the mechanism of Fig. 97 may be taken.

The figure shows Bremme's valve-gear.* It consists essen-

tially of a lever-crank chain, the motion of the valve being

taken from a point on one link produced. The figure, neces-

sarily drawn here to a small scale, shows the proportions of

an actual gear for a small marine engine. The eccentric

of the engine corresponds to the crank of the lever-crank

chain, and in practice coincides in angular position on the

shaft with the engine-crank. The dimensions are :

* See Mechanical World, September 2, 1889.
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AC = i J" (throw of eccentric) ;

20" (when.- the engine is going ahead).

The engine is reversed by altering the position of the suspen-

sion point B, as shown by the dotted arc.

It is required to determine the vertical component of

the velocity of the point D (from which the valve is driven

by a long rod) for any position of the gear, supposing the

eccentric AC rotates uniformly at a speed of 170 revolutions

per minute.

We first take a number of positions of AC (in this case

12 in one revolution), corresponding to equal small intervals

of time (in this case 0.0294 second), and the corresponding

positions of E and D are found. They are shown on the

diagram and numbered successively, those of D forming

points on a closed curve roughly oval in shape.

The vertical displacements of the point D have been

plotted on a time base, giving the diagram xx. From this

the velocity curve YYY has been drawn by the method of

1 8. On determining the scale of the diagram we see that

between the positions 4 and 5 the valve moved 0.60 inch

upwards in T
1

y revolution, i.e. in 0.0294 second. The veloc-

ity of the valve at the middle of that interval will therefore

be approximately
0.60 ,- =1.70 foot per second.

12 Xo.0294
In the same way the maximum downward velocity of the

valve is found to be while the crank is moving from 10 to 1 1,

and its value is about 2.00 feet per second.

If necessary the vertical acceleration of the valve can be

determined as in 19.

On drawing out the example for himself the reader will

find that even if the mechanism be drawn full size great

care is necessary to obtain anything like an accurate result.
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5o. Polar Diagrams of Velocities for Simple Plane Mech-

anisms. The velocities in plane mechanisms can only be

determined graphically from the positions of the virtual

centres of the links when these centres fall within the limits

of the drawing, and when their positions can be found with

accuracy. Often the exact position of a virtual centre is

difficult to define, because it lies at the intersection of two

lines which make a very small angle with one Another.

To avoid these difficulties, a general method of drawing

diagrams for velocities and accelerations of points in mech-

anisms has been devised,* and a few simple cases will be

considered here.

In Fig. 98 let ABC represent a rigid body having plane

motion, and suppose the linear

velocity v of the point A and

the angular velocity aj of the

whole body to be known. It is

required to determine the linear

velocities of the points B and C.

Let P be the virtual centre

of ABC with regard to the plane

of motion
;
then AP = - hence

OJ
'

the position of P can be found,

since PA is perpendicular to the

direction of v.

Join PB, PC. From these

lines the directions of motion of

B and C are known, and the

magnitudes of the linear veloci-

ties are also known, since

velocity otB=ajXPB,

FIG. 98.

and
velocity of C = cu X PC.

* R. H. Smith, Graphics, Book I, Chap. IX
; Burmester, Kinematik, Chaps.

XI and XII.
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These velocities can, however, be determined (without

finding the position of the virtual centre) as follows :

From any pole p draw the vector pa, representing the

velocity v. From the point a draw ab( = a>xAB) perpen-
dicular to AB, and draw be (

= coXBC) perpendicular to BC.
Then pb, pc are vectors representing respectively the linear

velocities of the points B and C. The truth of this state-

ment will be seen from the facts that the sides pa, ab are

perpendicular to the sides PA, AB, and they are also pro-

portional, since

and ab =

Hence pb = a>xPB =
velocity of B.

And similarly pc = a>XPC = velocity of C.

Note also that the triangles abc, ABC are similar; in

fact abc is the velocity image of the body ABC, and is turned

through an angle of 90 in the same sense as that of the angular

velocity co. The lines ab, be, ca are of course vectors, and on

consideration it will be evident that ab, for instance,

represents the linear velocity of B (round A as centre),

due to the actual angular velocity CD, because we have

drawn ab = t.AB and at right angles to AB. Further,

the values of pb and pc have been obtained by vector-

addition, the process described and explained in 16.

Next suppose that we have to determine the veloci-

ties in a linkwork mechanism such as that of Fig. 99,

where ZPABC represents a chain of links connected by
turning pairs, PZ being the fixed link.

The angular velocity w of PA is supposed to be known,
and also the directions in which the points B and C are

moving at the instant considered

The point A is turning about the fixed point P ;
hence its

direction of motion is at right angles to PA and its linear

velocity is co . PA = VA . We have to find VB and vc,
the linear

velocities of B and C.

Take any pole p, and draw lines pa, pb, pc from it par-
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FIG. 99.

allel to the given directions of VA ,
VB ,

and vc . Set off pa =VA
and draw ab perpendicular to AB and be perpendicular to
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BC. Then pb and pc represent VB and vc on the same scale

as that on which pa represents VA .

The triangle pab, for example, is a vector triangle, or

triangle of velocities, for the body AB, and ab is the velocity

image of AB, just as in the previous case. The vector ab

really represents the velocity of A with regard to B or of

B with regard to A, according to the sense in which we
measure it.

It is evident that the linear velocity of the point B will

be due to two causes: (i) the velocity of A with regard to

the fixed link ZP, and (2) that of B with regard to A. We
also know that B can have no velocity along BA, for BA is

a rigid body.
Hence to find pb (the velocity of the point B with

regard to ZP) we compound pa (the velocity of A with

regard to ZP) with ab (the velocity of B with regard to

A). Similar reasoning holds good in the case of pc.

If cb be produced and a line, pn, drawn to cut it at right

angles, it will be seen that pc is the resultant of pn (the

velocity of C in the direction CB) and nc (the velocity of C
in the direction normal to CB) . Similarly nb is the velocity

of B in the direction normal to CB, and hence be is the veloc-

ity of C with regard to B, measured in a direction normal to

CB, i.e., be is the velocity of C about B. Note that since

the link CB is rigid, C and B must have the same velocity,

pn, along CB.

The diagram can be drawn in a similar way if some of the

pairs are sliding pairs, and it will be found that if the chain

of links has both ends attached to fixed points the velocity

diagram becomes a closed polygon.

If it is required to find the velocity of a point D in the

link EC, that of C being known, it is only necessary to

7?D
make bd = bcXjjr ,

and to join pd. The required velocity.DO

is then represented by pd. This is evident, since the veloc
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ity ofD about B is to that of C in the proportion of BD : BC,

hence r~
=
^- Thus bed is seen to be the velocity image

of BCD.
We may take as an example of the use of this construc-

tion the Bremme valve-gear of Fig. 97. In Fig. 100 the

velocity diagrams have been drawn for the positions 4, 8,

and 10 of Fig. 97. The diagrams have been drawn from

separate poles for the sake of clearness, but they might

equally well have been drawn from the same point as pole
if that had been advisable.

Having drawn the mechanism in position 4 (say), and

having found by calculation that v
c (the velocity of the

centre of the eccentric) is 2.59 feet per second, a line p4
c
4
is

drawn from the pole in a direction parallel to v
c ,
and of the

proper length. We know that the direction in which E
is moving is perpendicular to BE, and p4

e
4
is therefore drawn

of indefinite length perpendicular to BE. The point e
4
is

found by drawing c
4
e

4 perpendicular to C
4
E

4
and p4

e4 then

gives the magnitude of the velocity of E. To find that of
7 x * TTN

D, we produce c
4
e
4
to d

4 , making = T
;
then p4d4 represents

the velocity of D when the mechanism is in position 4. The

vertical velocity of the valve will be represented by d
4
m

4 ,

the vertical velocity of the point D to which it is attached,

and on measurement this line is found to scale 1.56 feet per

second. (Compare value shown by curve in Fig. 97.) In

a similar way d
8
m

s and d10mlQ are found, and so on for any

required position of the gear.

It is not difficult to see that the velocity diagrams ob-

tained by this method are really the same as some of those

whose construction in certain special cases is explained in

Chapters III and IV. For instance, Fig. 101 shows the

construction already described for the piston velocity in a

direct-acting engine, together with the polar method of
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determining the same quantity. It is plain that the tri-

angles BCE and bpa are similar and that pa and CE repre-

sent the same quantity to different scales. The vector pa
thus represents the linear velocity of the piston, while pb

FIG. 101.

and ab represent respectively the linear velocity of the crank-

pin B around C and that of the crank-pin B around A . ab

is in fact the velocity image of AB, and pd gives the velocity

of any point D on AB, if = -
'

Since the trianglesBCE

and bpa are similar it also follows that we may look on BE
as a velocity image of BA . It is, however, turned through
an angle of 90 from the position ab.
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51. Indirect Method in more Complex Cases. It is not

possible in every case to proceed in such a direct manner in

constructing the velocity diagram for a mechanism. Fig.

102 shows a link motion for working the slide-valve of a
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steam-engine, of which OA, OB are the two eccentrics.

These are rigidly connected and rotate uniformly about 0,

the centre of the crank-shaft
; AC, BF are the eccentric-rods,

CF the link, and QE is the dra.g-rod or suspension-link.

Q remains fixed, except.when the engine is reversed. We
wish to find the velocity of a ^point D on the link CF.
The motion for the valve is taken from the point D.

The actual velocities of points A and B are known, and

also the direction of motion of E.

Having drawn out the mechanism in the required posi-

tion, a pole, p, is taken and the vectors pa, pb drawn repre-

senting the linear velocities of A and B respectively. In the

figure these correspond to an angular velocity o
j
i 120 revolu-

tions per minute ; they are each 4.2 feet per second.

A line px of indefinite length is next drawn at right angles

to QE, and therefore parallel to the direction of motion of E.

The point must of course lie somewhere on this line. We
next draw ay, bz of indefinite length, perpendicular to AC
and BF respectively ;

the points c and / must lie somewhere

on these lines.

The required velocity images of the points C, E, and F
must lie in some such position as c e fQ ,

where the triangle

c ^ / is similar to the triangle CEF, but is rotated through

90 in the sense of the motion. Another possible position

would be c^ejlt
and the line e^ will evidently pass through

all possible positions of e. Thus e is found at the intersec-

tion of the lines e^ and px. We then draw ec and ef re-

spectively perpendicular to EC and EF, and through the

points c e and / draw a circular arc, which will be the

velocity image of the curved link CEF.
The vectors pc, pe, pf then give the velocities of C, E,

and F respectively. To find the velocity of D the point d is

marked in its proper position on the curve cef, and pd is

drawn. In the position shown this velocity is 1.42 feet per

second, and is not in the direction of the centre line of the
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valve-spindle. It is therefore necessary to attach the valve-

spindle to a link-block capable of sliding on or in the link.

The horizontal velocity of the point D and the actual vertical

velocity of the valve will be represented by the lines pm and

dm
; they are respectively 0.35 and 1.36 feet per second.

The indirect method just explained has to be adopted
to draw the velocity diagrams for many compound kine-

matic chains. The example here given will be sufficient to

guide the reader in constructing such diagrams for most

cases occurring in practice.

52. Polar Acceleration Diagrams for Plane Mechanisms.

Acceleration Images. Since accelerations, like velocities,

Velocity Diagram.

FIG. 103

are vector quantities, it is plain that by similar constructions

to those explained in the preceding section we can obtain
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polar acceleration diagrams; there is one pole from which

the vectors radiate, just as in the corresponding velocity

diagrams.

Referring again to the rigid body of Fig. 98, suppose

that we know the linear, acceleration v' of the point A and

also the angular velocity co and Angular acceleration &/ for

the body. We wish to find the linear accelerations of

B and C.

In Fig. 103 take a pole, //, and draw p'a
f

, represent-

ing to any convenient scale the known acceleration of the

point A.

The acceleration of the point B may evidently be ob-

tained by adding to the vector p'a' the vector a'b'
', repre-

senting the acceleration of B with regard to the point A .

Now, the acceleration of a point moving with uniform
linear velocity v (or angular velocity at) in a circular path is

v 2

,
or wV radially ( 15). But if the linear velocity be not

uniform the point will be subject not only to the radial

acceleration just mentioned, but also to a tangential accel-

eration directed along the path of the point and measured

by v f =_ the rate of change of the magnitude of the veloc-

ity. This quantity may also be denoted by

dv d dco .

-=- = r-roj = r- r = rut
,

dt dt dt

where r is a constant. We thus see that in order to deter-

mine fully the acceleration of a point we must know not only

the rate of change of direction of the velocity, or radial

acceleration (&>V), but also its rate of change of magnitude,

or tangential acceleration (ra/) w being the angular velocity

and a>' the angular acceleration of the point.

The acceleration of B (supposing for the moment A to

be fixed) will therefore depend on two components, namely,
the known radial acceleration a>

2xAB along BA and the
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known tangential acceleration a/ XAB at right angles to AB.

Compounding these two accelerations by vector addition,

we see that the resultant will be AB Vw 4 + u'
2 = a'b'.

Draw a'p'=ABXu
2 and parallel to BA, and then p'b'

= co'xAB at right angles to AB and in the proper sense

given by the sign of the angular acceleration a/. The

vector a'b' is thus found; it makes an angle tan- 1

2 with

AB. Note that the radial acceleration of
ft' is easily found

from the velocity diagram, since its value is .AB
The resultant of p'a' and a'b' is p'b', which represents the

acceleration of the point B. The line a'b' is in fact the

acceleration image of AB, and the acceleration of any point,

C, on the moving body will be represented by p'c', where

the triangle a'b'c' is similar to the triangle ABC.
Note that in these diagrams the acceleration image

a'b'c' is the original figure ABC altered in scale, and rotated

through an angle
|
180 tan~ 2

\ in the sense of a>. The

pole p' in general does not correspond in position with the

virtual centre, for p
f

represents that point of the body which

undergoes no acceleration (not that point which has no veloc-

ity) at the instant considered.

In the case of the valve-gear of Fig. 97, whose crank is

rotating with uniform angular velocity, the acceleration

diagrams shown in Fig. 104 are constructed as follows, sup-

posing the velocity diagrams to have been previously drawn.

The acceleration of the point C is wholly radial, since w is

uniform; thus from the pole p
r the vector p'c' is drawn

such that p'c'
= --. Next, the direction and magnitude/iC

of the radial acceleration of E are known; the line p'e' is

(pe)
2

therefore drawn parallel to EB, and of length equal to ~^n.
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The tangential component of the acceleration of E is at

present only known as to direction
;
hence eV is drawn of

indefinite length and perpendicular to p'V'. The point 0',

which is the acceleration image of E, lies somewhere in this

line.

30 40

FIG. 104.

50 FT. PER SEC. PER SEC.

Now consider the acceleration of the point E with regard
to the link AC, i.e.

,
the acceleration ofE round C. Its radial

component is known; therefore draw c
1Y' parallel to EC

(ce)
2

(not to CE) and of length -7^-. The direction of the tan-
L>rL

geritial component is known, hence z"y' is drawn at right

angles to ^V, and the point e' must lie on this line. Thus
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e' is found at the intersection of z'x' and e"y, and p'e' (not
drawn in the figure) represents the actual acceleration of

the point E. If c'e' be produced to d1

', so as to be a pro-

portional copy of CED, df

is the acceleration image of D, and

p'd' gives the acceleration of D.

In the examples drawn out in the figure, ^ =
2.59 feet

per second, while AC =
i$ inch =0.145 foot. Hence the

radial acceleration of C is - *L =46.2 feet per second per

second.

In the case of the slider-crank mechanism of the direct-

acting steam-engine, the acceleration diagram is shown in

Fig. 105.

FIG. 105.

The vector p'b' is first drawn, representing to a con-

V 2

venient scale ^, the radial acceleration of the crank-pin

B, and then b'a r
is made equal to the radial acceleration of

the point A around B
;
as found from the velocity diagram

this, quantity is equal to -^-5- (see Fig. 101). The line //#'is

drawn parallel to AC, and along it will be measured the

acceleration of A, which has no component at right angles

to AC. The line a'a! is drawn perpendicular to the direction

of AB, and a'a' then represents the tangential component
of the acceleration of A around B. The point a' is thus de-

termined and the line a'b' is the acceleration image of the

connecting-rod AB.
It will be remembered ( 36) that our construction for

the acceleration of the piston was to set off along BA.
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BE 2

a length BF=-^-r t
and to draw FG perpendicular to A B,.BA

cutting AC in G. It has been pointed out that the line

GB (see also Fig. 65) is actually an acceleration image of

AB. This will be plain^on comparing the triangles CBG
and p'b'a', which are easily shown* to be similar, one being

turned through 180 with reference to the other, so that GB
and a'b' are parallel.

53. Example of Polar Velocity and Acceleration Dia-

grams. In the case of the Atkinson
"
Cycle" gas-engine,

shown in Fig. 106, we have a good example of the use of

polar velocity and acceleration diagrams in determining

the velocity and acceleration of the piston in an engine of

an unusual type.

The essential feature of this engine is that for every

revolution of the crank PA the piston (attached to the point

D) makes two complete strokes of unequal lengths, its posi-

tion being shown at points corresponding to the crank

positions i, 2, 3, 4, 5. This motion is obtained by connect-

ing the piston to a point Con a link ABC, pairing with the

crank-pin at A and with a rocking-lever, QB, at B.

Taking the mechanism in position i, the linear velocity

of the crank-pin at 180 revolutions per minute being 14.80

feet per second, we draw the vector pa, representing this

velocity, and the lengths of pb and ab then give the magni-
tudes of the velocities of B around Q and of B around A,

respectively, the directions of these velocities being, of

course, known. The line ab is the velocity image of AB,
hence the point c is easily found, remembering that the

triangles abc and ABC are similar, but that one is turned

through 90 with regard to the other.

We now know pc, the actual velocity of C with regard

to the frame of the engine. The lines pd, cd are drawn re-

spectively in the known directions of the velocities of D
relatively to the frame, and of D about C. They intersect
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at d, thus giving the magnitude pd of the velocity of the pis-

ton along its path. In the example drawn, the velocity of

the piston is 12.2 feet per second, that of B is 14.2, and that

of C 14.1 feet per second. The vector cd represents the

velocity of D with regard to C.

We have now to draw the acceleration diagram. The

acceleration of the point A is wholly radial, for the angular

velocity of the crank is supposed to be uniform. We know

therefore that this radial acceleration is - = 2 80
9-4

feet per second per second, and it acts in a direction parallel

to AP. Again, we know from the velocity diagram that the

velocity of B along its path is 14.2 feet per second; B there-

1 ^ j- T>r\ I4- 2 X 14-2 X 12
fore has an acceleration along its radius BQ of

= 194 feet per second per second. Similarly the velocity of

B about A is found from the diagram to be 0.8 feet per second

as represented by the length a6, hence the acceleration ofB
0.8X0.8X12

along BA is =0.366 feet per second per second,

and in a similar fashion the radial acceleration of D alongDC
10.5X10.5X12

is found to be -
=52.0 feet per second per

second.

Starting from the pole p' ,
the vector p'a* is drawn par-

allel to AP and of length 280, measured to any convenient

scale. The real acceleration of the point B with respect

to A is not known, so that a'b' cannot be drawn directly.

We can, however, draw a'f)2
=
0.366, representing the radial

component of the acceleration of B with regard to A. If

p'b' is the real acceleration of B, the point b' must lie some -

where on a line $?' drawn parallel to the direction of motion

of B with regard to A, and passing through /?2 ,
for a'b' (the

acceleration of B about A) must be a resultant of the

radial acceleration a'/92
and the tangential acceleration whose

direction is
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In order to find another line on which b
f must lie, we

start again from p' and draw '^ = 194, representing the

radial component of 5's acceleration about Q ;
a line fax'

drawn through fa at right angles to p'fa and to BQ gives the

direction of the tangential component, and it is therefore

clear that b
r

is at the intersection of the lines ft^y' and fax'.

The vector a'b' then gives the acceleration of B with respect

to A, and is the acceleration image of AB. The point c
f

t

which is the image of C, is readily found by making the

triangle a'b'c' similar to the triangle ABC, and p'c' gives the

acceleration of C with regard to the fixed link or frame.

We may consider this acceleration as being the resultant

of (i) the acceleration of D with regard to the frame, and

{2) the acceleration of C with regard to D. We only know
at present the direction of the first named, and can draw a

line p'z' parallel to the path of D. The radial acceleration

of D about C is known to be 52 feet per second per second,

and the vector c'd' is drawn to represent this
;
note that c'd'

must be drawn parallel to DC and not to CD. Through d'

a line is drawn at right angles to DC and cutting p'z' in d'.

We have then p'd' for the acceleration of D with respect

to the frame, and d'c' for the acceleration of C about D,
while d'd' gives the tangential component and d'c' the

radial component of this acceleration. Note that c'd' is the

acceleration image of CD. The acceleration diagram for

any other position of the mechanism can be drawn by
exactly the same method.

The foregoing examples will serve to indicate the system
to be adopted in determining the velocity and acceleration

of any point on a link of a rigid plane mechanism in any
given position.



CHAPTER VI.

ALTERATION OF MECHANISMS. CLbSURE.

54. Expansion of Elements. Certain examples have

already shown the reader how widely the external forms

of the links in a kinematic chain may be varied, while they
still retain exactly the same relative motion (see Figs. 83

and 84, in which both mechanisms are the same inversion of

the same chain).

We have now to consider further certain cases in which

links of mechanisms are enlarged, reduced, changed in form,

added, or omitted, without altering the relative movements

of other links.

Perhaps the most familiar instance of a change in form,

which in this case is really the expansion of an element, is to

be found in the eccentric so generally employed for obtain-

ing a reciprocating from a rotary movement in valve-gears

and elsewhere, and shown in Fig. 97.

Let us suppose in a slider-crank chain that while the cen-

tres of the links remain the same, the radius of the cylindrical

surface of the turning pair ab is increased, as in Fig. 107,

until at length the crank becomes a disc, inside of which lies

the centre of the pair ad.

The crank a has now taken the form of an eccentric,

without in any way changing the relative motion of the links,

the only alteration being that one element formed on each

of the links a and b has been expanded.

Again, take the case already mentioned (in 34) where

in the quadric crank-chain a swinging link c has appar-
164
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ently been replaced by a sliding block travelling in a curved

slot, as shown in Fig. 606. Notice that the pair be remains

just as before, while the appearance of the chain (but not the

relative motion of its links) has been changed simply by

increasing the radius of the turning pair cd, and utilizing only

a portion of its curved surface. The effective or kinematic

length of the link c remains unaltered .

As a third example, imagine the radius of the pair be,
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in the slider-crank chain of Fig. 108, to be increased as

shown, until it is greater than the length of the link 6, while

the link a retains its original form, that of a crank. The

expansion may be carried a stage farther, as shown in Fig.

109, by increasing the radius of the pair ab also, but in a

FIG. 108.

FIG. 109.

lesser degree. The links a and b have now both become

eccentrics, while c takes the form of a strap provided with

projections sliding in guides formed on d. The kinematic

lengths, however, of the links in Fig. 108 are just the same

as in Fig. 109, and the relative movements are the same.
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Here we have instances of the expansion of -the pairs of

elements be and ab.

55. Augmentation of Chains. Many instances occur in

which typical kinematic chains are apparently disguised by
the introduction of additional links. Such a change is

called by Reuleaux the augmentation of a chain or of a

mechanism, and the links which are added, while giving

the chain no new kinematic properties as a whole, are intro-

duced for constructive reasons.

Take as an instance a bicycle wheel and its axle. Here

the movement of the wheel relatively to the frame to which

the axle is attached is exactly the same as if the connection

between them were a simple turning pair. But on examina-

tion we find that the actual pairing is of quite a different

character, and that a series of balls running in grooves cut

in the hub of the wheel, and in the axle, have been provided,

to minimize friction and wear.*

Some examples occur in which a relative motion that

might have been attained by simple pairing is arrived at by
the use of a whole chain, and such cases might equally well

be looked upon as instances of augmentation.
A complex train of toothed wheels is often employed to

give a velocity ratio which might have been obtained by a

chain much simpler mechanically, but occupying more

space, or inadmissible for some other reason. Again, in a

steam-engine indicator the piston and rod are guided, not

by a simple sliding pair, but by a straight-line motion, which

is in itself a kinematic chain. Many other instances might
be cited in which pairing is replaced by

"
chaining," that is,

by the introduction of linkage ;
the link or links introduced

being so arranged as not to alter any of the relative motions

already existing.

It has been pointed out by Reuleaux that a chain which

already possesses the largest number of links which it can

* See Fig. 225.
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have as a simple closed chain, necessarily becomes a com-

pound chain on augmentation.
We shall see later that chains have occasionally to be

thus augmented for purposes of closure.

56. Reduction of Chains. A reduced mechanism is ob-

tained by the omission 'of one/ftr more of its links, corre-

sponding alterations being made in the pairing of the remain-

der. To illustrate this we may take the gear used for

actuating the valves of duplex non-rotative*"steam-pumps,
which has been already mentioned and is shown in Fig. no.

This mechanism is essentially a reduced crossed-slide

chain (a crossed-slide chain is shown in Fig. 86, 45).

Using the same letters as in that figure, we see that the

link b has been omitted, the lever a has its lower end formed

into a figure of constant breadth measured in the direction

of motion of c, and that end is fitted easily between two

parallel lugs or projections on c. It is plain that the relative

movement of c and a is practically unchanged.*

FIG. no.

We have here, as a result of omitting the link b, the intro-

duction of higher pairing with its advantages and disadvan -

* This statement is correct only for small displacements of the link a from its

mid-position.
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tages, among the latter being the mechanical trouble which

will arise when the material of the links wears and the fit

of the lever end becomes slack. The reader will find it easy
to discover for himself numberless similar examples of aug-
mentation and reduction in machinery which he has the

opportunity of examining.

57. Reduction by Use of Centrodes. Interesting cases

of reduction occur sometimes in which chains are reduced

by the introduction of higher pairing between new links

taking the form of centrodes of links of the original mech-

anism. This can only be completely carried out where the

centrodes take the form of closed curves. Consider, for

instance, the form of the quadric-crank chain in which oppo-
site links are equal, while the longer links cross one another.

This chain and its virtual centres are shown in Fig. ma.
It is evident from symmetry that the sum of the distances

from ab and Oad to O ac must be constant, and equal to the

length of one of the longer links. Hence, if a or c is the

fixed link, the path of O ac will be an ellipse of which the

length of the link a or c is the focal distance. The two

ellipses will always touch at the point (O ac ) which describes

them, and, in accordance with the well-known property of

centrodes, may be imagined to roll on one another as the

links move. Now suppose that d is the fixed link, and

imagine that elliptical plates in the form of the pair of

centrodes are attached to a and c (Fig. 1 1 ib). On removing
the link b, we then get a mechanism (Fig. me) of three

links only, and if proper constraint were applied
* the

links a and c would roll on one another, at the same time

having exactly the same angular velocity ratio as if directly

connected by a link b. We have thus reduced the mechan-

ism and introduced higher pairing without affecting the

relative motions of the remaining links.

* See 3 and 4.
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The employment of links shaped thus in the form of

centrodes must not be confused with the method of trans-

formed or reduced centrodes adopted by Reuleaux for the

CENTRODE OF a (
C
FIXED)

purpose of expressing the velocity ratio of certain links in

the simpler mechanisms.*

It is worthy of notice that the second pair of centrodes

*
Reuleaux, Kinematics, p. 70.
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in the anti-parallel crank mechanism (those of the two longer

links) are a pair of hyperbolas. The reader should draw
these as an exercise.

58. Closure of Incomplete Pairs. The meaning of the

term closure as applied to pairs and to kinematic chains was

explained in 3 and 4. We have now to discuss the

methods of applying such closure or restraint in various

cases in which the pairs or chains would otherwise be incom-

plete.

On examination it is found that in a large number of

pairs of elements existing in actual machines the forms of

the elements are not such as to completely constrain their

relative motion. For example, in certain forms of axle-

boxes for cars or locomotives we find that the brass of the

bearing embraces only a comparatively small angle on the

upper surface of the journal, and hence the form of the

bearing does not render separation of the surfaces in con-

tact impossible. Such separation does not occur in practice,

for the reason that the weight of the car presses the brass

against the journal. We have here an example- of force-

closure of a pair. It is often necessary and convenient to

employ force-closed pairs, since they are so readily taken

apart for examination, and are usually simple in forrn,.

The table or platform of a weighing machine, for instance,

generally rests on its knife-edges without being held down
in any other way than by gravity. The force of gravity is

not the only one employed for closure of pairs ;
in friction -

gearing, for example, the rollers must be pressed together

by some external force, so that one wheel can drive the

other without slipping. We shall find also that force-

closure has very frequently to be applied in pairs involving

non-rigid links.

Although, strictly speaking, all pairs in mechanisms

must be closed, either by the forms of their surfaces or

by the application of an external force, cases occur in which
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the desired object is attained by making the pair of elements

into a kinematic chain complete in itself, in which the added

links have for their only object the provision of the necessary

restraint. This chain closure is more generally applied for

the purpose of constraining the motion of incomplete chains,

as will be presently seen.
""

. *

59. Closure of Incomplete Chains. As in the case of a

pair, we may say that a kinematic chain is incomplete if the

relative movements of its parts are not completely defined.

FIG. 112.

A chain may be incomplete (a) because it contains too

many links, or (b) because it has not enough pairs of ele-

ments, or (c) either dead-points or change -points ( 30)

cccur at which it is locked, or its motion becomes indeter-

minate

Closure may be applied in an incomplete chain (i) by a

force, (2) by the duplication of the mechanism, (3) by the

addition of a pair of elements or another link.

When the incompleteness of a chain consists solely in

the incompleteness of a certain pair, this may be rectified



ALTERATION OF MECHANISMS. CLOSURE. 1 73

by any cf the methods just discussed. We need only con-

sider therefore how to treat chains consisting entirely of

closed pairs, the motion of which is indeterminate on account

of the existence of dead-points or of change-points.
The flywheel of a single-cylinder steam-engine is an

example of the use of the first method, force-closure, in

passing dead-points, for it is the energy already stored up
in the flywheel which keeps the crank rotating in positions

where the steam pressure is not able to exert any turning
moment on the shaft.

The energy of a moving body, such as a flywheel, is

evidently not available when the machine to which it is

attached is only moving very slowly or is just about to

start. In these cases the second method, chain-closure,

must be employed. For example, in a locomotive, or in a

marine steam-engine, the mechanism is so arranged that

FIG. 113.

when one crank is at its dead point, another, actuated by
a separate steam-cylinder, piston, arid connecting-rod, is

in a more advantageous position. The original chain has

thus been closed by duplication of the mechanism.

Another instance may be taken. In the well-known

three-cylinder or Brotherhood type of single-acting steam-

er hydraulic-engine (Fig. 112), three complete sets of driv-

ing apparatus work on the same crank, with the result that

only one set can at any instant be passing its dead-point.
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The parallel-crank mechanism of Fig. 113 is an instance

of closure by the employment of a fifth link, which is adopted
to enable the chain to move past a position which is not only
a dead-point, but also a change-point. It has been already

mentioned in 30 that the necessary closure is obtained

in this mechanism, when used ondbcomotives, by the addi-

fe
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the link-work of a form of steam-engine
* in which dead-

points are avoided by the addition of new links and the

partial duplication of the chain. Here the connecting-rod
b is transformed into a triangular frame, and is paired

(i) with the crank a, (2) with a link, ev connecting with

the crosshead cv (3) with a link, e
2 ,

attached to a second

crosshead c
2 ,
and (4) with a guiding link, /, attached to a

fixed point on the frame. It will be seen that when the pis-

ton which actuates c
l
is unable to exert any turning moment

on the shaft, the piston of c
2
is very nearly in the most favor-

able position with regard to the crank. In this way an

engine is obtained which has no dead-point, and which has

a very uniform turning moment compared to that of the

ordinary single-crank engine. The fixed link or framework

of the engine, d, is not shown in the diagram.
On consideration, it is obvious that in a chain which has

change-points, but is otherwise closed, we can obtain com-

plete closure if pairs of elements are arranged corresponding
in form to the required motion, and coming into action or

constraining the motion of the chain at the required in-

stants. Such pair-closure of chains is, of course, the con-

verse of the chain-closure of pairs, which has been already

discussed. We shall see in a later chapter how to form a

pair of elements, in general, so that they may have any
desired relative plane motion, and shall find that most fre-

quently such elements will have higher pairing.

As an example of pair-closure of a chain, one method of

closing the anti-parallel crank chain at its change-point is

shown in Fig. 115.

A pin P and a gab G are placed on the links b and d

respectively, so that they are in contact at the proper in-

stant, and permit only one kind of motion at the change-

point. To do this the pin P must be placed on b at the

point where it is cut by the centrode of d with regard to 6,

* See Engineering, October 28, 1892.
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and the gab must be where d is cut by the centrode of b

with regard to d.

The pin and gab may be considered as portions of the

two centrodes, applied for the purpose of closure as in Fig.

in, and so shaped as to prevent any relative slipping.

In a similar manner the links a and b might be paired by

using as pins and gabs portions of their elliptical cen-

FIG 115.

trodes. Such centrodes would be equivalent to small por-

tions of elliptical wheels, toothed to prevent slipping.

Many instances occur in which pairs of elements are

thus applied so as to act at the change-points of a mechan-

ism, and prevent its transformation into another mechanism

or into a pair of elements. In general, pair-closure must be

provided for each change-point ;
in the mechanism of Fig. 115

the two pins and two gabs are required so as to come into

action at the two change-points occurring in each complete
revolution of the chain.



CHAPTER VII.

CONSTRAINT AND VELOCITY RATIO IN HIGHER PAIRING
INVOLVING PLANE MOTION.

60. Constraint of Bodies having Plane Motion. It has

already been stated that a body free to move in a plane

possesses three degrees of freedom and has three degrees of

constraint. Further constraint may be applied by causing

such a body to touch certain points on the surface of a sec-

ond rigid fixed body, these points being known as points
of restraint. A point of restraint c.f a figure or body may
be defined as a point on its outline, so touched by a point
on the outline of a second fixed figure or body, that no rela-

tive sliding motion is possible along or parallel to the com-

mon normal to the two figures at the point of contact.

When thus restrained the body or figure is considered as

being kept in contact with the point or points of restraint.

We may take an example to illustrate the meaning of

this definition, and to show the actual nature of points of

restraint. Suppose (in Fig. n6a) that it is required to ar-

range a support or base, a, for a tripod, b, so that an instru-

ment fixed on b can be removed from its support and re-

placed exactly in its previous position. This may be effected

by providing b with three rounded points or legs, CDE. A
hole, F, is made in the base, a, and is of pyramidal or conical

form, so that if the rounded end of C is placed in F, there

will be contact at three points of restraint ; in this way, so

long as the contact is maintained, the only possible relative

motion of c and a will be one of rotation about" some axis

177
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(

passing through the centre of the spherical surface of the

end of C. The next step is to provide on a a slot or groove,

G, of triangular cross-section as shown
;
when D is placed in

this groove there will be two more points of restraint, and

the only possible relative motion remaining will be a rota-

tion about the axis CD.
'

Finaffy the position of b is fixed

relatively to a if the third pointE is made to rest in contact

with a flat surface, H, formed on or connected with a, thus

furnishing the sixth point of restraint required (see 7).

FIG. i i 6a.

The whole device is known as the
' '

hole, slot, and plane.'
'

The application of similar principles is illustrated in the

design of Ewing's extensometer,* an instrument for meas-

uring the deformation of test-pieces under stress. In this

apparatus the bar or test-piece whose extension or com-

pression is to be measured (a in Fig. 1166) carries a clip, 6,

attached by the points of two set-screws in such a way that

b can move relatively to a about the axis of the set-screws

at B. The clip b carries a projection, 6', ending in a rounded

*
Ewing, Strength of Materials, p. 75.
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point F. This point engages with a pyramidal or conical

hole formed on a second clip, c, which is also secured to a by
means of two set-screws at C. So long as F rests in its

recess, b and c can have no relative motion -unless the length

BC alters
;
in that case the angular motion of b and c will be

proportional to the extension or compression of a. Actually

the projection 6' is not rigidly attached to b, but can turn

FIG.

through a small angle about the axis BD. This provision

is made in order that any minute twist of the test-piece a

about its axis BC may not affect the angular motion of b

and c to any appreciable extent. This angular movement
is indicated by the scale E attached to c

;
the distances CF,

CG are equal, so that the movement of the scale, as read by
the microscope at M, will be twice the actual deformation

of the test-piece as taken on the length BC.
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Similar methods are followed in designing the so-called

kinematic clamps and kinematic slides.*

A kinematic clamp is a contrivance intended to fix com-

pletely the position of one body with reference to another ;

a kinematic slide permits one body to have on *

degree of

freedom with reference to'anothef .

On consideration it is plain that in a kinematic clamp
or slide the points of restraint must be suitably placed

with regard to the shape of the body to be restrained.

It is thus proper to inquire what must be the disposition

of the points of restraint required, either to define the posi-

tion of one body relatively to another, or to permit the

movable body to retain one degree of freedom
,
and thus to

constrain its motion completely. We shall suppose that

the movable body at first possesses three degrees of free-

dom, and is capable of plane motion.

Let a (Fig. 117) be such a body, and let a fourth point

FIG. :i7. FIG. 118.

of restraint, A, be provided, in addition to the three points

necessary for insuring plane motion. The arrow-head

then represents the fourth point of contact of the restraining

or fixed body.
Draw AA' normal to the tangent of the outline of a at A .

Any possible motion of a may be regarded as an instan-

*For an example of a kinematic slide, see Min. Proc. Jnst C. E., Vol.

CXXXI1, p 49.
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taneous rotation about a virtual axis perpendicular to the

plane of motion. We need therefore only consider how the

single point of restraint, A, affects the possibility of turning

the body a about such an axis. It must be remembered

that by the definition of a point of restraint, a is to be kept

in contact with the restraining body. This is impossible if

the virtual centre is not somewhere along A A', for if the

virtual centre were, say, at B, a point about which only

right-handed rotation is possible, it is plain that such rota-

tion could only occur if the point A ceased to touch the

restraining body. Hence we see that any possible instan-

taneous motion of a must be about a virtual centre situated

in AA f

,
and any motion of translation must be along a line

at right angles to AA' .

Next consider the effect of keeping the body a in contact

with a restraining body at two points, A and B. Let the

normals AA'
,
BB' intersect at P. The body is then only

capable of an instantaneous rotation about P. If the nor-

mals are parallel, then only an instantaneous motion of

translation, i.e., rotation about an infinitely distant axis,

will be possible.

On adding another point of restraint, C (Fig. 119), it will

be found that if we suppose that the body a remains in con-

tact with the three new points of restraint, A, B, C, no

movement is possible, except when the three normals inter-

sect in one point or are parallel. In these cases instanta-

neous turning about the point of intersection, and instanta-

neous translation about an infinitely distant axis, are re-

spectively possible, so that a at the instant considered will

thus possess one degree of freedom and will have constrained

motion.

In Fig. 119 a little consideration shows that no move-
ment at all is possible except about an axis situated within

the triangle PQR, so long as the restraining body is rigid.

The whole field of motion, with the exception of PQR, then
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becomes what Reuleaux calls a "field of restraint." But
if movement did occur about an axis placed within the

triangle PQR (in the figure such rotation could only be

right-handed), the body a would at once cease to touch the

restraining points with, which we suppose it to be kept in

contact. A similar result will t5e found with other arrange-
ments of the points of restraint, and therefore in general

FTG. 119. FIG. 120.

the position of a will be fixed if it is made to touch the re-

straining body at the three additional points A, B, C, a

result already stated in 7.

Fig. 120 shows the case in which the three normals meet

in a point, P. If the shape of the body a is such that no point

of restraint can be so applied as to have a normal that does

not pass through P, then the body cannot be fixed by the

application of three or any number of points of restraint,

and its shape must be altered for that purpose. For exam-

ple, a circular disc having plane motion could not be so fixed.

It is thus evident (a) that if one of two rigid bodies

capable of relative plane motion remains in continuous con-

tact with two points of restraint formed on the second body,
the relative motion is constrained, and the virtual centre of

the two bodies is always at the intersection of the two com-

mon normals.
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Also (b) if three points of restraint are employed, and

contact at all three is continuous, constrained relative

motion is only possible if the three common normals inter-

sect in a point, or are parallel.

The reader will find that the constraint of the motion

of a body by means of such points of restraint as have been

defined above is an easier matter than the limitation of the

movement of a body by points of contact with a second

fixed body, if no force is supposed to keep the two bodies

in contact. In this case the bodies would possess greater

freedom of motion than under the restrictions we have

supposed. The theory of constraint has been treated by
Reuleaux * and by Burmester,f to whose wroiks the student

is referred for information on the subject.

61. Closed Higher Pairs having Plane Motion. Let us

next suppose that the moving body a and the second or fixed

body 6, while kept in continuous contact, have such forms

that one is the geometrical envelope of the other, and that

in every position the normals at the several points of con-

tact are either parallel or meet in a,point. It is obvious that

in this case at any instant a can move in one way, and in

one way only, with reference to b
;
in other words, a and b

will form a closed pa'ir We proceed to consider some exam-

ples of such pairing, w^hich in general will be higher pairing,

in accordance with the definitions in 2.

In Fig. i2ia, let ABCD be a figure (called by Reuleaux

a Duangle), drawn by describing the arcs ABC, CDA, with

a radius equal to BD, and with D and B as centres re-

spectively. Suppose that this figure, representing a body, a,

having plane motion, is made to touch two lines, PQ, QR t

inclined at an angle of 60, the points E and F on these

lines forming points of restraint for the duangle, and the

lines PQ, QR representing the profile of the restraining

body b. The normals at E and F to QR and QP will inter-

* Reuleaux, Kinematics. Chapter III. f Burmester, Kinematik, Chapter V.
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sect at 0, where they make an angle FOE = 120, and they
must pass respectively through the points B and D, since

these points are the centres of the arcs ADC, ABC.
As the duangle moves in contact with PQ and QR, the

CENTRODE OF 6
tt FIXED)

FIG.

path of jf? must be a straight line, GBH, parallel to QR and
at a distance, f>E, from it. The path of D similarly must
be a line, GDK, parallel to OP. Hence the motion of the
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duangle relatively to PQ, QR will be the same as that of a

straight line of constant length, BD, whose ends lie contin-

ually upon two lines, KG, HG, enclosing an angle of 60;
further, the virtual centre of the two bodies will be the

point 0, the intersection of the two common normals.

Since the angles OBG, ODG are right angles, a circle may
be drawn on GO as diameter, passing through the points

GB, OD. The point A also lies on this circle, since the angle
BAD is 60. Join AG. Then so long as the curves ABC,
ADC touch the lines'QP, QR respectively, the angle AGD =

angle ABD = constant. Thus A lies continually on a line,

RP, drawn through G and inclined at 60 to RQ. PQR is

then an equilateral triangle, inside of which the duangle
moves. The relative motion of the triangle and the duangle
will be constrained if A is the normal to PR at A

; i.e., if

the three normals at the points of contact meet at 0. This

is seen to be the case, for the angles AOD, ABD, ADB,
AOB are all equal. Hence AO bisects the angle BOD and

is perpendicular to PR.
The path described by with reference to the triangle

PQR is the centrode of the duangle. It evidently consists

of a curve joining K and H. Now in any position the circle

drawn on GO as diameter and passing through B and D has

a chord, BD, of constant length, and the angle BGD is con-

stant. Hence GO, the diameter of this circle, is the same

(length =GH) for all positions of 0. Thus lies on a cir-

cular arc joining K and H and having G as centre, and the

complete locus of with regard to the triangle is an equi-

lateral curve-triangle GKH (Fig 1216). Since the angle BOD
is constant, the locus of with regard to the duangle is seen

to be a duangle BODO', the radius of whose sides is \GO.
The whole relative motion of the duangle ABCD and

the triangle PQR is thus represented by the rolling of the

duangle BODO' inside the curve-triangle GHOK. The

centrode ofABCD with regard to the trianglePQR is GHOK
;
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that of the triangle with reference to ABCD being BODO f

'.

Any point on the duangle ABCD will have a path made

up of trochoidal curves described on the plane of the

triangle PQR, and vice versa.

Relative motion of the duangle and the equilateral tri-

angle may evidently be represented by the rolling together
of a pair of circular arcs, one having a radius twice that of

the other. Points on either figure will therefore describe

trochoidal curves on the other.

The example just given will indicate the method of

studying the relative motions of the elements of higher

pairs having plane motion. A large number of closed

higher pairs may be devised by utilizing figures of constant

breadth. The equilateral curve-triangle previously men-

tioned, is such a figure, and its motion relatively to a circum-

scribed square may be followed as an exercise.

A number of other forms are given by Reuleaux in the

chapter already quoted. The student should note in all

these cases that the form of the path described on b by a

point on a is not the same as that described on a by the

corresponding point on b, a condition previously mentioned

as being characteristic of higher pairing.

62. Form of Elements for a Given Motion. Having illus-

trated the method of determining the centrodes and the

relative motion in the case of higher pairs of mutually re-

straining elements of given profile, we have next to show

how to solve the converse of this problem, namely, how to

find the forms of a pair of elements whose relative motion is

previously decided. The relative motion in question must,

of course, be defined by the forms of a pair of given cen-

trodes, the mutual rolling of which, as already stated, rep-

resents the relative motion required. It most frequently

happens in practice that we have also given the form or

profile of one element of the pair, and the form of the second

has to be found.
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Let AA and BB (Fig. 122) be a pair of centrodes, of

which A belongs to, or is traced upon, a body whose profile

is aa'. It is required to find the profile of a second body to

which the centrode BB belongs ;
the profile to be such that

while the two bodies remain in continuous contact the cen-

trodes will roll on one another and the bodies will thus have

the desired relative motion.

Take any point, a, in the profile aa' and draw.aC normal

to aa' at a, and cutting the centrode A at C. In this case

for convenience aa' is shown in the figure as a straight line,

but it may, of course, be of any form.

At the instant when the profile 66' (to be found) touches

the given profile at the point a, aC must be the common nor-

mal, and the virtual centre of the two bodies must lie on this

normal, for otherwise contact would not be continuous.

The point C, where the normal at a cuts the centrode A,
must at that instant be the virtual centre of 66' with regard

to aa', since the curve AC is the locus of the virtual centre

of 6. AC may be regarded as being attached to aa', since

it is a curve traced on the body represented in outline by aa'.

We proceed to find a point, 6, on the profile of the second or
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moving body, such that when a and b are in contact C is

the virtual centre of the two bodies and aC the common
normal.

Suppose that the centrodes AA and BB are in contact

at some point D, and . measure along the centrode BB a

length DC1 equal to the length iof DC measured along AA.

Draw BjCDt, representing the centrode B in the position it

occupies when a is the point of contact of the two bodies and
C is their virtual centre, and make CD l

= CD. Join aDr

Then since the outline of bb' may be regarded as attached

to the centrode B, any point on that outline having the same

position in relation to C
1
and D that the point a has in rela-

tion to C and D
l
will be the point that "touches a when the

centrodes touch at C. Accordingly we need only make bD =*

aDj and bC = aC in order to determine the position of b.

The point b is then a point on the required profile which

will touch the point a when C is the virtual centre of the

two bodies. In the same way we can determine any other

point on the profile required, and it only remains to pro-

vide the resulting body with the restraint required to pre-

vent any other motion than that desired. This would in

general be done by so forming the body bb' that it possesses

at any instant three points of contact with aa', the normals

to these points always intersecting at the virtual centre.

It would, in fact, be necessary to repeat the construction of

Fig. 122, assuming two other portions of the outline of aa',

and finding two new portions of the outline of bb', the cen-

trodes, of course, remaining the same as before. It may
be noted that while the relative motion of the centrodes

is one of simple rolling, that of the two outlines is in general

rolling and sliding combined.

63. Condition for Uniform Velocity Ratio. We have seen

in 60 that when two bodies are in continuous contact and

are capable of constrained relative motion, the normals at

the points of contact must intersect at the virtual centre.

Consider now the case of three bodies (Fig. 123) of which
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a and b turn around permanent centres O ac ,
O

bc ,
with reler-

ence to the fixed body c, the bodies a and b being connected

by higher pairing at a point of contact, P. The three bodies

FIG 123.

thus form a kinematic chain of three links, and we know
that their virtual centres must lie in a straight line. Hence
Oab lies on the line joining O ac

and O
bc

. But the normal at

P must pass through O ab if contact is to be continuous.

The position of O ab is thus fixed, and if a and b are to have

one degree of freedom, the normal at any other point of

contact, Q, must likewise pass through Oab .

Next suppose that at the instant considered a has a cer-

tain angular velocity, u)
ac ,

with reference to c, in consequence
of which any point on a will have an instantaneous linear

velocity measured by the product w
ac X radius. The point

O ab is a point common to a and 6, and its linear velocity

will be u
ac x0 ac ab ,

the direction being of course perpendic-

ular to the radius, i.e., perpendicular to the line O acOab .

Knowing the linear velocity of O ab we can find the angular

velocity of b, which must of course be

linear velocity co
ac X O acOab

'be radius
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Hence

angular velocity of a a>ac O abO bc

angular velocity of b
~

co
bc

~
OabO ac

'

In Bother words, the virtual centre Oab divides the distance

O acO bc inversely in the proportion of the angular velocities

of b and a with regard to c. From this important result it

follows that if the angular velocity ratio for the bodies a and
b is to be constant, Oab must be a fixed point > in which case

its path on each of the bodies a and b must be a circle.

Uniform angular velocity ratio will then involve the rolling

together of circular centrodes.

If we desire to find the angular velocity of a with regard

to b (that of b with regard to c being known) we have only
to suppose b fixed, and it follows that

0)ab

o aco ab

64. Wheel-gearing. It may be noticed that if we form

a and b in the shape of their centrodes we get a means of

connecting two shafts (fixed to these bodies) with uniform

angular velocity ratio, and the angular velocities, as we have

'just seen, will be in the ratio of the radii of the circular cen-

trodes ra and r
b , supposing that these centrodes roll together

without slipping.

Thus in Fig. 124 we should have

I

c
I

FIG. 124.
"

Such kinematic chains, used for the purpose of trans-
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rrdtting motion from one shaft to another with any desired

uniform or variable velocity ratio, are known as wheel -

trains or gear-trains; the shafts, as we shall see in a later

chapter, need not be parallel, but may intersect or even may
not meet at all, the gearing being arranged to suit these con-

ditions.

It is sometimes possible to use the actual forms of the

centrodes (or, more strictly speaking, axodes) as the shapes

of the gear-wheels. For example, the centrodes of the short

links of an anti-parallel crank-chain might be replaced by

elliptical gear-wheels, as we have already seen in 57, and

if these wheels rolled together without slipping, the shafts

attached to them would at every instant have the same

velocity ratio as the short links of the original chain. In

the same way we can design many other forms of gear-wheels

which when rolled together without slipping will transmit

motion from one turning pair to another with some desired

uniform or variable velocity ratio. Such wheels in the form

of smooth axodes are not very useful in practice on account

of their liability to slip; it is therefore usually necessary

to provide the surface of each with teeth. These teeth

have higher pairing, and their relative motion is in general

combined rolling and sliding. The form of their profiles can

therefore be determined by the method already explained

in 62, the two centrodes and the form of one profile being

given. We shall return later to the question of the forms of

wheel-teeth.

Wheels having such forms that their outlines are their

own centrodes (or, more correctly, their surfaces are their

own axodes) ,
take a great variety of forms. It will be suffi-

cient to notice here only cases in which the axes of rotation

are parallel, and the planes of motion of the wheels therefore

coincide. The elliptical wheels already mentioned afford

one example, but other forms, usually termed lobed wheels,

are occasionally met with. In every instance the point of
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contact of the centrodes, i.e., the virtual centre of one wheel

with regard to the other, must lie somewhere on the line of

wheel centres. In a pair of lobed wheels, the difference

between the greatest and least radii of the centrodes is called

the inequality; in elliptical wheels the inequality is equal
to the focal distance of' either/*ellipse. Properly shaped
lobed wheels working together have the same inequality.

Thus in Fig. 125 the difference of PA and PB, the greatest

FIG. 125,

and least radii of the three -lobed wheel a, must be the same

as QD QC, the inequality of the two-lobed wheel b with

which a gears. Further, the outlines of the wheels must be

such that in every position of contact the point R lies some-

where on the line PQ, for if this were not so R could not

be the virtual centre of a with regard to b.

In practice lobed wheels find only a very limited appli-

cation, and the reader is referred to other works for infor-

mation as to the shape to be adopted in any particular case.*

* See Rankine's Machinery and Millwork, p, 97 ; MacCord, Kinematics of

Mechanical Movements, 98.
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65. Spur-wheels. Wheel-gearing is most frequently

employed to connect two shafts whose axes are parallel and

whose angular velocities are in a constant ratio. It is some-

times sufficient to use friction gearing (in the form of smooth

or grooved circular rollers), but gearing of the kind now
to be discussed is in general provided with teeth lying

parallel to the axes of the wheels, and is known as spur-

gearing. The circular centrodes are called the pitch circles

of the wheels, for it is around their circumferences that the

teeth are set off.

Let a and b (Fig. 126) be portions of two spur-wheels

gearing together with uniform velocity ratio, c is the fixed

FIG. 126.

link of the chain, and P and Q are O ac and O bc respectively.

The point R( = O ab ) is the point of contact of the centrodes

or pitch-circles and is called the pitch-point.

Let 5 be the point at which the profile of the tooth formed

on a is in contact with the profile of the tooth formed on b.

Let SR be the common normal to the tooth profiles at 5, the

point of contact. At the instant considered, V, the velocity

of S resolved along SR, must be the same whether we con-
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sider 5 as a point on a or as a point on b. The actual

motion of 5 (as a point on a) is that due to a velocity V a

in a direction at right angles to PS. Similarly the actual

velocity of 5 (as a point in 6) must be V
b ,

at right angles

to 05. It is plain that if contact is to be maintained at 5

during the instant considered, Vt

a and V
b
must have the

same component V along the common normal to the two

surfaces at 5. We may in fact regard V a
as the resultant

of two velocities, V along the normal and v
a perpendicular

to it
; similarly Vb

is the resultant of V and v
b

.

Evidently v
h

v a measures the speed at which the sur-

face of b is sliding relatively to that of a; one object in a

well-designed gear should be to make this sliding motion

as small as possible, so as to minimize wear.

The angular velocity of a is measured by the ratio 7^.'

which from the figure is seen to be equal to 7-?, where

PM is the length of the perpendicular dropped from P on

V
RS. In the same way - measures the angular velocity

of b, and

..
-

cohc PM '

QN PM PR'

which is constant if R is a fixed point in the line PQ.
We thus see that for uniform velocity ratio the forms of

teeth must be such that the common normal at the point
of contact always passes through a fixed pitch-point, R,

which divides the line of centres in the inverse ratio of the

angular velocities, and is in fact O ab . This important result

has already been obtained in a more general manner in

63.

Two kinds of curves at once suggest themselves as being
suitable for wheel-teeth profiles, because their normals are

easily found. These are involutes of circles and the vari-
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otis cycloidal curves produced by rolling one circle, attached

to which is a describing point, inside or outside the circum-

ference of another base-circle. In the case of a rack, which

may of course be looked upon as a wheel of infinitely large

diameter, the base-circle is replaced by a straight line.

66. Involute Teeth. Taking first the case of involute

teeth, let AR and BR (Fig. 127) be the pitch-circles of a

FIG. 127.

and 6, a pair of wheels to be geared together witn. unitorm

velocity ratio. R is the pitch-point. Now let MS and TN
be a pair of circles concentric with the pitch-circles, and let

PM PR
QN QR-

Draw MN, the common tangent to MS and TN
; evidently

MN passes through R. Next suppose thatMN represents a

flexible string wrapped round the circles MS and TN and

kept stretched between them. The desired velocity ratio

(represented by the fraction =
j

will correspond to the
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rolling of BR on AR, and also to the relative movement f

MS and TN, if connected by the string MN. Consider

any point such as L, supposed to be fixed on the string.

As the string unwraps from a, L will describe the curve 5L
on the wheel a, and SL will be an involute of the base-circle

MS. Similarly, while "the string is wrapping on to TN
the point L will describe on the wheel b the involute LT of

the base- circle TN. It is plain that the curves LT and LS
must always touch at some point, L, on the line MN, which

line is thus seen to be the path of the point of contact. Again,
it is a property of the involute of a circle that the tangent,

LN, drawn to the base-circle from any point L on the curve,

is a normal to the curve at that point. The line MN is thus

in every position of the wheels the common normal at the

point of contact of the curves SL and LT, and it passes

through the fixed pitch-point R. The condition for uniform

velocity ratio is thus fulfilled, and if the teeth on a and b

have their profiles formed on the curves SL, LT, they will

work correctly together. The same curves would work

together if the distance PQ were increased or diminished,

for the common tangent MN would still divide PQ in the

same ratio, and would still be the common normal at the

point of contact.

In order to complete the outlines of the wheels the num-

bers of teeth must be decided. Evidently the length of

tooth measured radially cannot be greater than UV, and

must in practice be somewhat less. Further, in order that

the wheels may work properly, a second pair of profiles

must be commencing contact when the first pair cease to

touch; in actual gearing at least two pairs of teeth are

always in contact. This means that supposing the tooth

profiles SL, LT are just ceasing to touch near N, a second

pair must be touching at R, and a third pair preparing to

begin contact at or near M; in other words, RM must be

not less than the distance from the point where the pitch-

circle cuts the face of one tooth to the point where it cuts the
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face of the next. This distance, measured along the pitch-

circle, is called the pitch, and the number of teeth on the

wheel must be equal to the fraction (circumference of pitch-

circle * pitch) . The pitch must plainly be the same for

every wheel of a set gearing together, and we thus see that

the numbers of teeth of wheels gearing together are propor-
tional to the circumferences, or to the diameters, of their

pitch-circles, and hence are inversely as their angular veloc-

ities.

The chief practical objection to the use of involute teeth

is that the pressure between them acts obliquely along the

line MN, instead of acting along a line perpendicular to U V.

It is not possible to make involute wheels of only a few

teeth without increasing this obliquity to an undesirable

extent.

67. Cycloidal Teeth. Cycloidal curves have the geomet-
rical property that the normal to the curve at any point

passes through the point of contact of the describing circle

with the circle or straight line on which it is rolling. In

Fig. 128 let AR and BR represent the pitch-circles of a pair
of wheels which are to have cycloidal teeth, P and Q being
the centres of the wheels. As the pitch-circles roll together

during the motion of the wheels, imagine that a third circle,

CR, pivoted at M, can roll in contact with the other two,

and let L be a describing point on the circumference of CR,
the three circles always touching at R. Suppose the three

circles to move as shown by the arrows, and let 5 and T be

the points on the pitch-circles of a and b respectively, which

are in contact when L is at R. As the circle CR rolls on the

outside of the circle BR, we may imagine that the describ-

ing point L traces on the wheel b the curve TL, which is there-

fore an epLycioid. In the same way L traces on a the hypo-

cycloid SL, and the curves SL and TL will, of course, always
be in contact at the point L. Since R is the point on the

circle CR which is at rest relatively to the circles A R and BR
(for the circles roll and do not slip), it follows that the direc-
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tion in which L is moving at any instant relatively to the

line of centres PQ, must be at right angles to the straight

line LR, or, in other words, LR is the normal to the curves

TL and SL at the point L. These cycloidal curves there-

FIG. 128.

fore fulfil the condition for uniform velocity ratio of the

two wheels, and this fact does not depend on the size of the

describing circle CR.

The length and pitch of the teeth must be such that at

least two pairs are always in contact, and the teeth are

spaced out along the pitch-line exactly in the way described

for involute teeth. Notice that the path of the point of

contact for cycloidal teeth is an arc of the describing circle

(arc LR in Fig. 128).

Cycloidal teeth in practice are almost invariably drawn

by the use of two describing circles. Fig. 129 shows a pair
of cycloidal teeth profiles just commencing contact at Llt

and just ceasing to touch at L
2
. The curves L

l
T

l
and L

l
S

l



CONSTRAINT AND VELOCITY RATIO IN HIGHER PAIRING. 199

are described by the circle C^R, while L
2
T

2
and L

2
5

2
are

drawn by a describing point on C
2
R. Note that the whole

path of the point of contact is L^L^. In the case of a

single pair of wheels the circles CJZ. and C
2
R need not be

of the same diameter, but if a set of wheels is to be made,

any wheel of which is to gear with any other, the wheels

must not only have teeth of the same pitch, but these teeth

FIG. 129.

(if cycloidal) must all be drawn with describing circles of

the same diameter.

Involute and cycloidal curves are, of course, not the only

ones that can be chosen for the purpose of giving uniform

velocity ratio. They are, however, easily drawn, and for

this reason are generally used.

We might have chosen arbitrarily a form for the teeth
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of one wheel, and then, having given the centrodes (pitch-

circles), we might have determined the proper form for the

teeth of the second wheel by the method of 62. In some

cases this would give a form impossible for construc-

tive reasons, although correct so far as relative velocity is

concerned. For instruction as^to the design and propor-
tion of wheel-teeth the reader should consult Unwin's

'.' Machine Design," Vol. I, chapter X, or other works 011 the

same subject. t



CHAPTER VIII.

WHEEL-TRAINS AND MECHANISMS CONTAINING
THEM. CAMS.

68. Simple and Compound Wheel-trains. The deter-

mination of the velocity ratio in such a wheel-train as that of

Fig. 130 involves no difficulty, for it is plain that one or

FIG. 130.

more intermediate wheels (as b) will not affect the numerical

value of the velocity ratio of the first and last wheels. The
linear velocity of the pitch-line of every wheel is the same,
and the angular velocity ratio of the first and last, there-

fore, only depends on their own diameters, so that^ = ~,U
cd

ra

the sign depending on the number of idle wheels. Inter-

mediate or idle wheels thus simply reverse the direction of

motion. When all the wheels in the train have external

contact, the angular velocity ratio of the first wheel to the

last has a positive value (or, both wheels turn in the same
20l
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sense) if the number of axes is odd, while an even number of

axes gives the velocity ratio a negative value. More com-

plex wheel-trains, however, require further consideration.

In Fig. 131 we have a compound spur-wheel mechanism of

FIG. 131.

four links, d being fixed, while b consists of two wheels rigidly

connected and turning on the same axis.

Let r
a ,

r
b ,
R

b ,
r
c ,

be the radii of the pitch-circles, then

from 64 we have

&>_, r\

CD
bd

Also,

Hence

R
b

(0

-N.

Suppose a to be the driving-wheel, while c is the driven

one
;
we see that the above result may be expressed by say-

ing that

- ., ,. revolutions of driving-wheel
velocity ratio =

1
. -, , . =- -

revolutions of driven wheel

product of radii of followers

product of radii of drivers

Instead of radii we might evidently put numbers of teeth.
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It would be easy to find a single pair of wheels having the

same velocity ratio as the given train. For example, if we
had a pair of wheels, A and C, such that

and ~=~

these would have the same velocity ratio and the same dis-

tance from centre to centre. The point of contact of their

pitch-circles would divide the distance O ad Ocd externally in

the proportion of the angular velocities of a and c, and

would in fact be the point O ac
* Hence in Fig. 131 we

have only to divide the line of centres, graphically or other-

wise, in the proper ratio to find the sixth virtual centre.

FIG. 132.

In doing this (as in working all problems connected with

wheel trains) ,
note must be taken of the sign of the velocity

ratio, which depends on the presence or absence of annular

wheels (i.e., wheels having internal contact), or of idle

wheels, and also on the number of axes in the train. Take,
for example, the two trains shown in Figs. 132 and 133, in

* For graphic methods of determining virtual centres of wheel-trains, see

Kennedy, Mech. of Machinery, note to Chapter VI.
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the first of which suppose ra
=

2, r
tj

=
i, R b

=
that the velocity ratio in Fig. 132 has the value

AT <*> J I-^Xl 3
A/ qq i J '

|
o

1*xT.*+T

i.5, so

cd

In Fig. 133 we have' a sinfple train having exactly
the same numerical value for its velocity ratio (since

T 1\
- = -

) ,but in this case the negative valuemust be adopted,
r
a

8/

since the wheels a and c turn in opposite senses. In Fig. 132
O ac may be found by drawingAyl' CCf

parallel to one another,

and of lengths 8 and 3 respectively, to any convenient scale.

The intersection of A'C' with the line of centres fixes O ae .

Evidently the given train might be replaced by a pair of

wheels of radii R a
and R

c ,
the larger being annular, having

their centres at A and C, and their pitch-circles touching
at O

ac>
as shown by the dotted arcs. Again, in Fig. 133

FIG. 133.

AA' CCr must be drawn parallel, but in opposite senses, so

as to allow for the negative velocity ratio, and O ac is, of

course, the point of intersection of AC and A'C.
It is by no means necessary to have the centres of all

the wheels of a train in one straight line. The back-gear

of a lathe, for example, is an instance of a compound reverted

train in which the centres of the first and last wheels coincide.
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This arrangement makes no difference in the numerical

value of the velocity ratio, and is simply adopted for con-

venience in construction.

69. Epicyclic Gearing. In the above examples of wheel-

trains we have supposed the frame carrying the wheels to

be the fixed link. Wheel gearing is often employed in which

one of the wheels is the fixed link and the frame or arm

carrying the remaining wheels is movable. Such gearing

is called epicyclic, and we proceed to discuss some of its sim-

pler cases.

We take first the mechanism of Fig. 133, but suppose a

to be fixed, while d is rotated in a clockwise or positive sense

(Fig. 134). Let A7 be the velocity ratio of the train, i.e., let

ad

FIG. 134.

Plainly, if we consider (oda as being positive in sign, then o;
(

must be negative, hence

Uad
=

'da'

Now in any case where two bodies, c and d, have motion

relatively to a third, a, which is fixed, any angular move-

ment of c relatively to a may be looked on as the algebraic
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sum of the motions of c relatively to d and of d relatively

to a. Thus

or
Jda

where N is itself a negative quantity. A numerical example

may, perhaps, make this clearer. Suppose the wheels a and

c to have 100 teeth and 90 teeth respectively; these teeth

have the same pitch, and we can, of course, take the ratio of

the numbers of teeth instead of the ratio of the diameters or

radii of the pitch-circles. Thus -a =
;

in other words,
9

supposing d to be fixed, while a makes one revolution with

FIG 135.

regard to d, c would make i^ in the opposite sense. Now
suppose that in a certain time a makes i revolution c

making + ii, while d is at rest. Cause the whole mechan-

ism to execute + 1 rotation in the same time around Oad ;
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this brings a to rest, makes d perform + i revolution, and

therefore gives c i \^ + i = 2 J revolutions in the same sense as

that of the arm.

If an idle wheel, b, had been interposed between a and c,

as in Fig. 135, we should have had Af = + - "- = -d = aposi-
r. a)

O)

tive quantity, and coca
= a)da + u

:d ,
whence -^ = i + d =

tu
aa

i N, as before. With the numbers of teeth, as in the

example just given, and the train arranged as in Fig. 135,

we should have, if A/" = + i-i,

OJ

'da

i.e., for each revolution of the arm, c makes \ revolution in

the reverse sense.

Fig. 136 represents a compound epicyclic reverted tram.

Let n, n. n, be the numbers of teeth in the wheels

FIG. 136.

a, 6,, 62 ,
and c respectively. Evidently, if the pitch of both

pairs is the same, n
a + n bt

=n
b^
+ n

ti

. The velocity ratio of

the train will be positive and has the value
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hence >
ed
= -(Nx<>da ).

Further, when a is the fixed link

Thus, for instance, suppose a has 30 teeth, b^ has 15, and

b
2
and c have respectively 20 and ^5 ;

then

and
'da

Thus c will make 0.6 revolution for each revolution of the

arm, but in the opposite sense. Such a train might evi-

FIG. 137.

dently be arranged to give c a very slow rotary motion, say

revolution for each revolution of the arm d.

10,000

As an example of an epicyclic reverted gear containing
an annular wheel the wheel-train used in certain front-

driving bicycles
* maybe given. In Fig. 137 // represents

* See also the Weston triplex pulley-block described in 78, Chapter IX.
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part of the front fork of the bicycle, to which is rigidly

attached the central pinion /'. The arms a, secured to

the axle and cranks, carry one or more planet-wheels, p,

gearing with the central pinion and with an annular wheel

formed on the inside of the hub, h, of the driving-wheel.

Suppose this wheel h has 60 teeth, while p has 1 5 and /' has

30; it is plain that nh
= n

f+2np
if the wheels are to gear

together and the wheel h is to be coaxial with /'.

Now if a were the fixed link,

w/a 60

therefore cuha
= i X a>

fa
= \&a/.

The ratio to be determined is the number of revolutions of

the wheel h per revolution of the crank a
;
this is the same

quantity as

-- = velocity ratio of h and a.

Now a>,, f
= a>

Hence 7= + i-5;
"V

in other words, the wheel will make i\ revolutions for each

revolution of the crank, and in the same sense. A bicycle

having a driving-wheel 44 inches diameter would therefore

be geared to 66 inches with this arrangement.

70. Mechanisms Containing Wheel-trains. Mechanisms

are of common occurrence in which wheel trains form part
of chains containing also sliding and turning pairs. Fig. 138
shows diagrammatically a

* '

sun-and-planet
' '

gear contain-

ing an annular wheel, forming part of a mechanism con-

taining a slider-crank chain.

The crank a is able to rotate about the point O ad with

reference to a fixed frame d, and pairs with a link 6, forming
the connecting-rod in a slider-crank chain, of which c is the
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sliding block. On b, however, is formed a spur-wheel
whose pitch-circle has its centre at O ab . The spur-wheel

gears with an annular wheel e whose pitch-circle has its

centre at Oad . The virtual centres are marked on the dia-

FIG. 138.

gram. We wish to find the number of revolutions of the

annular wheel e for each revolution of the crank a.

As in previous examples, let N be the velocity ratio of

the wheel-train; i.e., let

wba
r*t i e

Plainly N will be a positive fraction in this case. We note

that during the action of the mechanism the average value

of co
bd

is zero, for b simply swings to and fro, and a line

marked on it describes equal angles right and left from its

mid-position. Hence we may say that on the average

ad 'db
wad

that is, we may consider the angular velocity of a and b

instead of that of a and d. The two would always be exactly
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equal if b always remained parallel to itself, i.e., if the con-

necting-rod were infinitely long.

Now w^ = oj j + oj.^.

OJ
f

OJ . OJ

OJda

T OJ,

'ba

For example, suppose e had 100 teeth while b had 95, so that

N = + 0.95 ;
then for each revolution of the crank a, e would

make 10.95=0.05 revolution in the same sense. This

mechanism is actually used as gearing for a capstan driven

by a hydraulic engine, b being attached to the connecting-
rod, while the capstan barrel is attached to e.

As another example of a mechanism containing a wheel-

train we may take the wheel crank-chain of Fig. 139, which

FIG. 139.

is formed by combining a simple wheel chain with an open
crank-chain of five links.

If the lengths of the links a and b, and also those of c
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and d, are equal, as in the figure, we obtain Cartwright's

straight-line motion, in which the point P describes a

straight-line path passing through Q. The purpose of the

two spur-wheels is to close the five-link chain, whose motion

would otherwise be unconstrained.

In Figs. i4oa and 1406. we have a slider-crank chain in

which spur-wheels can be used for a somewhat similar pur-

pose. Consider a slider-crank chain in which the connect-

FIG.

CENTRODEOF 6
FIXED)

FlG.

ing-rod b is made equal in length to the crank a. (Compare
Figs. 60 and 91.) With these proportions it is possible for

the stroke of c to be (i) either twice the length of the crank,
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as in the ordinary slider-crank chain, or (2) four times the

length of the crank, in which case Obc must travel on past
Oad . A third possibility is that O

bc and O ad may remain

coincident, in which case b and a move together, and the

mechanism will reduce to a pair of elements.

Notice in Fig. 1 4oa that since the length of b is equal to

the length of a and the angle O bdO bcO ad is a right angle, the

points O bdOadOcb
must lie on the circumference of a circle

whose radius is the length of a or the length of b. Since

O hdOad is a diameter of this circle, it follows that O bd remains

always at the same distance from O ad ,
and the centrode of

b with regard to d is a larger circle whose radius is twice the

length of a. If now (Fig. 1406) we attach to d an annular

wheel whose pitch-circle is the centrode of b with regard to

d, and if we fix to b a spur-wheel whose pitch-circle is the

centrode of d with regard to b, these wheels will gear

together, and will compel O bd to remain always at a fixed

distance from Oad . If these wheels were not provided we
should have a change- point at the instant when O bc passes
O ad ,

but if the virtual centre O bd is compelled to remain at

a fixed distance from O nd by the action of the spur-wheels,

O bc is compelled to continue its travel, and the mechanism
is not permitted to change. Obviously this arrangement
is really a case of pair-closure at a change-point. (Com-

pare the examples in 59.) The only really essential

portions of the wheels are therefore those teeth which are

in gear while Obc is passing Oad .

71. Cam-trains. The name cam-train is applied to

mechanisms containing a rotating disc (generally non-circu-

lar) or a sliding plate, the profile of which forms one element

of a higher pair and gives some desired periodic motion to

the second element of the pair. Such a cam-pair may be

closed by forming one element into the geometrical envelope
of all possible positions of the other element. Mechanically
cam-pairs usually possess the disadvantage of small wearing
surface and rapid wear, common in higher pairs. Almost

invariably force-closure is necessary to make up for the
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looseness of fit following on wear. A cam-train is in general
a mechanism of three links; such, for example, is the cam-
train found in the stamp-mill used for crushing hard ores

(Fig. 141).

FIG. 141.

A rotating shaft carries the cams bb. These successively

lift and let fall the stamps cc, which are guided by means of

the framework a. It will be noted that the cam-pair be is

force-closed by the weight of the stamp itself, and also that

the form of the cam is such that in any position during the

upward stroke it is touched by the horizontal under surface

of the collar on the stamp-rod. This fact has to be consid-



WHEEL-TRAINS AND MECHANISMS CONTAINING THEM. 215

ered in selecting the form of the cam, for it is obvious that

during all the upward movement the point of the cam sur-

face which touches the collar must be at a higher level than

any other point on the cam surface. It will be found that

with such a cam it is not possible to give the collar any
arbitrary position for any given angular position of the

cam.*

In many cases the cam has to determine the position of

a point, instead of a flat surface, on the follower or link driven

by the cam. This point is then usually taken as the centre

of a roller or pin with which the cam engages; and'within
certain limits imposed by constructive considerations, any
desired continuous change of position can be given to the

follower by suitably choosing the form of the cam profile.

72. Rotating Cams. The action of cam-trains will be

most easily understood by the study of a few examples. To

produce a given form of reciprocating motion along a straight
or curved line we may employ either a rotating, a sliding, or a

cylindrical cam. The first example (Fig. 142) will be that of

a rotating cam designed to give its follower a reciprocating
motion along a straight line passing through the cam centre,

the velocity being uniform throughout both strokes if the

cam rotates with uniform angular velocity. The mechan-
ism is somewhat similar to that of Fig. 141, and consists of

a cam c (whose form is to be determined^), a guiding frame

a, and a follower b, which is to slide with the periodic

motion specified above. The end of the follower is pro-

vided with a roller, for the sake of lessening friction.

Since the cam rotates uniformly, while the follower moves
with uniform velocity, the cam describes equal angles while

the follower traverses equal distances. Plainly the outline

of the curve required will be such that successive radii

making equal angles with one another have a constant

difference in length. All we have to do, in fact, is to divide

the path of A into any convenient number of equal parts,

* See Kennedy, Mech. of Machinery, p. 154.
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say six, and to divide the half-revolution of the cam into

the same number of equal angles. If CA is the least dis-

tance of the centre of the roller from the centre of the cam,
and CA V CA

2 , etc., are the distances after one, two, etc.,

twelfths of a revolution, we then make Ca
i
= CA V Ca

2
= CA

2 ,

and so on. The curve drawn through a
x
a

2
will be recog-

B

FIG. 142.

nized as an Archimedean spiral, and the same kind of curve

will, of course, be found for the remaining half of the cam.

In this curve let CA = r , and let r be any radius-vector of

the curve, then r = r
()
+ md, where 6 is the angle the radius-

vector makes with CB and m is a constant. The real out-

line of the cam itself is not the dotted line a^a^ but the full

line drawn so as to touch a series of circles whose centres

lie on a
v
av etc., and whose diameters are all equal to that

of the roller on the follower.

A cam frequently has to actuate a point on a lever,

which of course moves in the arc of a circle. An exactly
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similar construction in this case gives the form of the cam,
but the points.4 ,

A v ...
,
will now be placed along a cir-

cular path instead of along a straight line.

As a more difficult case, let us consider the form to be

given to a cam arranged to move a follower with uniform

acceleration during one half of a revolution, after which the

FIG, 143,

sliding piece remains at rest during a quarter of a revolu-

tion and returns with uniform velocity during the remain-

ing quarter revolution, the cam rotating uniformly.
In Fig. 143 let the points a, b, c, d, e correspond to the

positions of the centre of the pin on the reciprocating piece
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at equal intervals of time during one half revolution, while

the distance ae is the length of stroke of the reciprocating

piece. Since the upward stroke is to be made with uniform

acceleration, the distance ac = ^ab, while ad = gab, and ae

= i6ab (where ab is the,distance moved in one eighth of a

revolution). Let be the centre of the cam. Then, start-

ing with the sliding-piece in its lowest position, when the

cam has turned through a quarter of a revqlution, the line

FIG. 144.

Ocf
will coincide with Oc. Thus at the instant when the

sliding-pin has its centre at c, the radius Oc' will be vertical,

and we must set off a distance Oc' = Oc. By a similar con-

struction other points on the curve, such as b'
,
d'

, etc., are

obtained. The profile of the cam itself is obtained by
drawing a curve (shown in full lines) at a uniform distance

from ab'c'd'e' equal to the radius of the pin on the sliding-

piece.

We may now consider the construction to be adopted if

the line of motion of the follower-point does not pass through
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the centre of rotation of the cam. In Fig. 144, let

A oA^2 . . . be successive positions of the follower-point,

corresponding to successive equal angles described by the

cam-shaft, and let the line A^A^A^ . . . produced be a tangent
to a small circle B QB 1

B2B3 . . . described about the cam centre,

As the cam rotates it is seen that such a line as > 6a6

drawn touching the small circle will take up the position

BqAoAt when it becomes vertical. Hence the point ae will

be found by drawing a circle with as centre, and radius

OA 6 so as to cut >
6a6 ;

then B6a6 is the line which coincides

with B A
Q
at the time when the follower-point is at A Q .

. If the distance A^A^ is equal to the arc B
Q
BV and the

distances A^A V B^B2 ,
are equal, and so on, it is evident that

the curve a
t
a

2
is an involute of the base-circleBJ3JBJ3z. ..

Such curves are generally used for the cams of an ore-

crushing stamp-mill. In an involute the tangent to the

base-circle is a normal to the curve (see 61); hence in

any position of an involute cam the point lying on the

vertical line B
Q
A

6
will touch a horizontal line corresponding

to the under surface of a collar on the stamp-rod.

73. Sliding and Cylindrical Cams. The form of a slid-

FIG. 145.

ing cam to obtain any desired kind of periodic motion is

easily determined. Fig. 145 shows the arrangement of a

cam of this kind used for giving the requisite motion to the
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"belt-shifting gear of a planing-machine. The cam c here

takes the form of a slotted plate, sliding in a frame or guide
a. Two bell-crank levers, b

1
and 6

2 , pivoted to a at L and
M

y carry follower-pins which work on the slot in c. The

longer arms of the levers are provided with forks for shifting

the belts as required from the" fast to the loose pulleys of

the planing-machine. The, length and form of the slot in

the cam are such that when c is in its extreme position to

the left, as shown by dotted lines, b
2
is thrown to the right,

and its belt runs on the fast pulley Pv while the fork b
l

is

also inclined to the left and its belt runs on a loose pulleyPs
.

On moving the cam from left to right it will be seen that

62 first moves its belt on to the loose pulley P2 ,
and after-

wards 6
t
moves the second belt on to the fast pulley P4

. In

this way it is impossible for both belts to be on fast pulleys

at the same time. The belts drive the pulleys Pl
and P

4

in opposite senses, hence the action of the gear is to reverse

the motion of the shaft to which the pulleys are attached.

The motion of the planing-machine table is thus also re-

versed.

Fig. 146 shows a cylindrical cam, in which the cam profile

FIG. 146.

is traced on the surface of a rotating cylinder and the line of

motion of the follower is parallel to the axis of the cylinder.

The figure shows how such cams are employed in certain
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automatic screw-making machines for the purpose of giving

endwise motion to the rotating spindles carrying the work.

The working profile of the cam is the edge of a strip secured

to the surface of the cylinder c by screws
;
a series of these

strips may evidently be arranged so as to give any desired

periodic range of rest and motion to the carriage of the

rotating spindle. In this case the roller on the follower b

is kept pressed against the cam edge by a spring or other

FIG. 147.

suitable means. The mechanism is thus force-closed. It

would, however, be quite easy, by attaching two strips, to

form a groove in which the follower-roller would work
;
the

mechanism would then have pair-closure.

A rotating cam of the kind shown in Fig. 143 could be

closed in the same manner if a groove were formed on the

flat surface of the cam-plate, engaging with a pin or roller

attached to the follower. Or, as an alternative, the cam

may be formed with a figure of constant breadth, in which
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case it can have constrained motion with relation to a fol-

lower provided with a pair of parallel faces, as in Fig. 147.

\ Gams which are pair-closed are often called positive-

motion cams.

i 74. Velocity Ratio in Cam-trains. Let Fig. 148 repre-

sent a cam-train of three links j^we wish to find the velocity

ratio of the train, i.e., the ratio

linear velocity of follower

angular velocity of cam

FIG. 148.

Find O ac ,
the centre about which the cam rotates, and

also O abi which in this case is at an infinite distance, since

the follower moves in a straight line, QP. If the follower

were a lever turning about a fixed centre, the line O acOab
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would be as easily determined, The third virtual centre

O bc
must be the point where the common normal to the cam

and follower at their point of contact cuts this line. Let

FIG.

FIG.

V be the common velocity of the bodies b and c at their

point of contact
;
its direction will be parallel to the line MP.

Draw a triangle of velocities ABC, in which AB represents
V, CB represents Vb , and AC represents the velocity of
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sliding of c on b in a direction parallel to the common tan-

gent at the point of contact. Draw O acM parallel to this

tangent, and therefore perpendicular to PM.

FIG. 149^.

FIG.

Then the angular velocity of the cam

and the linear velocity of the follower along QP

F, = V
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Hence the velocity ratio of the pair is

FIG. 149*.

FIG. 1497.

In other words, if the cam rotates with uniform velocity, the

linear velocity of the follower is proportional to the distance

between the centre of rotation of the cam and the virtual
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centre of the cam and follower. If the point P moves in an

arc of a circle about a point O ab as in Fig. 1496, then it

may be shown, exactly as in 63, that the angular velocity

ratio of b and c will be the number

A number of the forms taken by cam-trains are illus-

trated by the models represented in Figs. J49a-i49/. A
positive-motion cam, of form somewhat similar to that of

Fig. 142, is shown in Fig. i49a, while Fig. 1496 is an exam-

ple of a cycloidal cam whose follower point moves in a

circular arc. Fig. 149^ shows another positive-motion cam,
where the follower-pin works in a groove in the cam, and

Fig. i^gd is a sliding cam. In Fig. 149^ we have a rotat-

ing globoidal cam actuating a lever; Fig, i49/ represents

the form of cylindrical cam known as a "
swash-plate."

The reader will -notice in three of these cases the springs

which close the pair.



CHAPTER IX.

RATCHET MECHANISMS AND ESCAPEMENTS.

75. Ratchet-gearing. We have so far considered mech-

anisms in which relative motion of the various links is possi-

ble at any instant, so that no link is definitely held or checked

by another. We have now to study the action of Ratchet-

gearing, which may be said to be gearing so arranged that

certain links are temporarily or periodically locked together

or connected during the action of the mechanism. This

locking or checking of relative motion may be so effected

that relative motion of the two links is only possible in one

sense or direction (when the gear is called by Reuleaux a

Running-ratchet Train}, or movement in both directions

may be rendered impossible when the ratchet acts, in which

case the gear is known as a Stationary-ratchet Train. Fig.

150 shows the two kinds of ratchet-train in their typical

Running. FIG. 150. Stationary.

forms. Each consists of a frame or arm a, a ratchet-wheel 6,

and a ratchet or click c. In the first figure b is evidently

capable of left-handed rotation only, so long as the ratchet c

(sometimes called a pawl) is resting against its teeth. In

the second figure motion is only possible when the pawl is

227
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lifted clear. Examples of simple ratchet-trains will readily

occur to the reader; in Fig. 151, for instance, is shown the

FIG. 151.

mechanism of a ratchet-drill, in which the different links are

lettered in the same way as in the preceding figure.

76. Running Ratchets. It is not necessary that the con-

nection between the pawl and ratchet-wheel in a running
ratchet should be of the positive kind shown above. Fig.

152 shows a form of frictional ratchet gear commonly used

to transmit motion in one sense only from the crank-axle

to the sprocket-wheel of a
"

free-wheel" bicycle. Here the

ratchets themselves, cc, take the form of small rollers held up
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by springs behind them; the rollers are confined within a

driving-ring, 6, attached to the sprocket-wheel, and when in

action jam between this ring and suitably formed surfaces

on a ratchet-wheel, a, attached to the crank-axle. Such

FIG. 152.

frictional ratchet gears are sometimes classed under the

head of silent ratchets.

It should be noted that while ratchet-trains are used most

frequently for controlling the motion of a turning pair,

there are many cases in which such trains actuate links

which have linear motion.

Fig. 153 shows a running-ratchet gear in which the

ratchet c, attached to a reciprocating bar d, acts on a

ratchet-rack 6, and drives it in one direction only, motion

in the opposite direction being prevented by a second ratchet

or pawl c', attached to the fixed link a. The mechanism is

thus a combination of two running-ratchet trains, abed and
abc'

;
the former for driving, the latter for checking.
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Most running ratchets in common use are really a com-

bination of this kind; for example, in the ratchet-drill the

function of the checking ratchet is performed by the fric-

tional resistance of the drill in its hole.

It is important to note that the form of the surfaces on

which the pawl and ratchet-wheel*or rack engage must be

carefully chosen, in order that the mechanism may fulfil

its purpose. The shape of the pawl must in fact be such

that the pressure between it and the tooth or surface with

which it acts does not tend to throw it out of gear. Further,

the mechanism must be force-closed, so that the pawl always
tends to engage itself; this is commonly effected either by
the action of springs (Figs. 151 and 152), or by the weight
of the pawl itself (Figs. 150 and 153), or, in some cases, by
making the pawl itself a spring. Fig. 154 shows a running
friction ratchet which depends for its action on the weight
of the ring-shaped pawl itself. Such a mechanism has been

employed in certain electric arc lamps for controlling the

downward movement of the carbons.

77. Stationary (Checking and Releasing) Ratchets. -

Ratchet mechanisms of this type are used where it is

necessary to check and release the driven link at will. In

most cases a running ratchet or a cam is provided for the

purpose of actuating the link whose motion is controlled by
the locking ratchet. The mechanism of a lever-lock (shown

diagrammatically in Fig. 155) is of this kind. The tumbler c

and the bolt b here form a stationary-ratchet mechanism

with the frame a.

The release of the bolt is effected by the action of the

portionM of the key, which really forms a cam engaging with

the curved surface of the profile PQ of the tumbler. When
this release has been effected the bolt is shot back by the

action of the portion N of the key. This part (also a cam)
moves the bolt by engaging with the notch seen on the under

side of the bolt. In actual lever-locks three, four, or more
tumblers are used, with a corresponding number of steps on
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FIG. 153. FIG. 154.

FIG. 155-
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the key, and springs are provided so as to press the tumblers

against the key.

Releasing and checking ratchets need not necessarily be

positive in their action
; they may depend on frictional forces

just as in the case of the driving ratchet of Fig. 152. Thus,

for example, a friction-brake may be looked upon as a fric-

tional checking ratchet.

In Figs. 156(1 and 1566 we have another example of a

checking-ratchet train, in the case of the Ydie lock. This

FIG. 156^.

lock really contains two distinct mechanisms, one a cam-

train abc, which actuates the bolt, and the other a locking-

ratchet train, which secures the cam, and can only be re-

leased by the insertion of the correct form of key. These

mechanisms are shown separately. Fig. i$6a shows the
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former train, in which the cam c is rotated by turning the

key, and locks the bolt when in its extreme outer position.

Fig 1566 shows the cam and its bearing; on inserting the

notched key /, as shown, each of the tumblers or pawls e is

lifted to such a height that the division between the two

portions of the tumbler is flush with the surface of the

bearing. The cam can then be rotated and the bolt b

can be shot or withdrawn. This locking gear is, of course,

FIG. 157*.

a stationary-ratchet train. The case a is rigidly connected

with the frame of the lock, a, when the whole lock is put

together.

Most checking or releasing ratchets are found combined
with some form of cam gear, as in the examples above. This

is also shown in the case of the releasing-ratchet trains em-

ployed for working the steam-valves of a Corliss engine (Figs.

1 5 ya and 1576). Fig. 1 5 ya represents the engine cylinder
and the gear for working its steam- and exhaust-valves;

Fig. 1576 shows in diagrammatic form the ratchet mechan-
ism of the steam-valves. The various parts are arranged
somewhat differently in the two figures. The object of such

gear is to open the valve at the proper point in the revolu-

tion of the engine, and then, after a variable interval, de-
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pending on the amount of steam to be admitted, to release

the valve so that it may be promptly closed by the action of

springs or of gravity. The valve is attached to the spindle

and lever a, and is opened by rotation in the sense shown by
the arrow.

'"'

.

FIG.

In the example shown, the point at which the valve

closes is determined by a cam d whose position is regulated

by the governor of the engine. During the motion of open-

ing, the valve is driven from the rod / connected to a rock-

ing wrist-plate (Fig. isya). The wrist-plate thus gives a
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rocking motion to the lever e, and when moving in the direc-

tion of the arrow this lever opens the steam-valve by the

engagement of the ratchet or pawl c with a corresponding

stud or projection on a. On reaching the proper point the

pawl is lifted by the action of the cam d
;
then the weight

of the dashpot, or the tension of a spring, causes the lever

a to drop. Thus the valve is promptly closed. A spring

(not shown) is of course required in order to keep the pawl
c pressed against the cam d and in readiness to engage with a

on the return stroke.

The many forms of brakes and clutches may be regarded
in a sense as ratchet mechanisms (checking and releasing

ratchets) ;
in many cases their action is independent of the

sense in which the wheel or shaft is rotating.

Fig. 158 shows two forms of clutch employed for connect-

ing at will two pieces of shafting, A and B. To the shaft

B is secured one portion of the clutch B
l ;

the shaft A carries

FIG. 158.

the other portion, A v in such a fashion that A^ may be made
to slide along A so that its projections will engage with the

corresponding recesses in Bv At the same time the pro-

jecting feather or key A^ compels A^ and A to rotate to-

gether. Thus when the clutch is engaged, the rotary motion
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of B is necessarily transmitted to A. On comparing Figs.

158 and 150 the reader will see at once that we have in the

two forms of clutch an exact equivalent of the running and

stationary ratchet of 75. The clutch shown in Fig. 158

in the upper view will only transmit relative motion in one

sense
;
it is therefore really a running-ratchet gear. In the

lower view no relative movement of the shafts is possible

when the clutch is engaged; the contrivance thus forms a

stationary ratchet.

An example of a frictional running ratchet was given in

76. Fig. 159(2 represents a locomotive wheel and its

brake; here we have essentially a frictional stationary-

ratchet gear used as a brake, the brake-block corresponding
to the ratchet or click. In Fig. 1596 we have a frictional

FIG. 1590.

FIG.



RATCHET MECHANISMS AND ESCAPEMENTS. 237

stationary ratchet used as a clutch for communicating
motion from the shaft B to the shaft A . When the clutch

A
l

is pressed along the shaft into contact with B
l
the fric-

tional grip between the two halves of the clutch is sufficient

to drive the shaft A. The half clutch A
l

is made to slide

along the shaft by the action of a fork whose jaws engage
in the groove G shown in the sketch. The same arrange-
ment is employed in the clutches of Fig. 158.

Ratchet mechanisms are of very frequent occurrence

in machinery, and it is here impossible to attempt any ex-

haustive catalogue of their many forms. The subject has

been most completely treated by Reuleaux.* Certain

ratchet mechanisms containing non-rigid links are discussed

in 88.

78. Escapements (Uniform, Periodical, and Variable).

Under the head of escapements may be classed a number of

self-acting checking and releasing ratchet mechanisms in

which the driven link is alternately released and stopped.

The most familiar example is, of course, found in a clock or

watch, where the driving weight or spring is permitted to

move the clock-work and the hands by a definite amount at

regular intervals. Such an escapement is a uniform escape-

ment. A second kind of escapement (e.g., the striking

mechanism of a clock) allows a train of wheel-work to move
at definite intervals, but the amount or range of movement
is varied in a predetermined manner, so that, for instance,

at every hour the striking gear makes one more stroke than

at the preceding hour, up to twelve strokes, after which the

cycle commences again. We have here a periodical escape-

ment in which, while the period is constant, the range is

periodically variable. There is still a third kind, ! an adjust-

able escapement, in which the range or the period is variable

at will or is altered irregularly. We shall take an example
of each kind.

* The Constructor, Chapter XVIII
;
Kinematics of Machinery, 119-121.
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Graham's Escapement (Fig. 160) belongs to the first class,

and its essential parts are an escape-wheel a (connected with

the wheel-work of the clock and driven by it in the sense

FIG. 160.

shown by the arrow), and an anchor 6, whose motion is

controlled by the pendulum, with which it is connected

through the verge and fork b''. The escapement must (i)

permit the escape-wheel to advance by one tooth at each

swing of the pendulum, and must also (2) communicate at

each swing a minute impulse to the pendulum, so as to

maintain its periodic motion. The anchor is really a ratchet,
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the surfaces LM, L'M' forming the working faces of the

pawl when the motion of the escape-wheel is checked. The
faces LN, L'N' are slightly inclined to the circle passing

through the tips of the teeth of the escape-wheel, so that as

each tooth is driven past the pallet or point of the anchor, a

small impulse is given to the pendulum while near the centre

of its swing. Almost immediately after a certain tooth has

passed LN, for instance, the anchor swings from right to left,

and the escape-wheel is checked, because another tooth

strikes the face L'M' only to be released when the pendulum
again swings back. The curved portions of the tooth-out-

lines are so formed as to clear the points of the pallets while

the anchor is receiving its impulse. It is important that a

good clock escapement should work well with a very small

angular movement of the pendulum; and in this respect
Graham's escapement was a great advance on its predeces-
sors.

As an example of a periodical escapement we may take

the so-called
' '

English
' '

striking-train of a clock. Fig. 1 6 1

shows this mechanism in a diagrammatic form, omitting all

unnecessary details. It is desired to communicate to the

hammer of a bell or gong such a periodic motion that at

stated intervals, say of one hour, the bell is struck; the

number of strokes increasing by one each time the move-
ment occurs until the cycle is completed. The whole con-

trivance includes

(1 ) A train of wheels (c^gjk) set in motion by its own driv-

ing weight or spring and checked by a ratchet which is

released every hour by the clock itself.

(2) A mechanism (driven by the clock) which controls

the range of movement of the wheel train cgjk, and thus

varies the number of strokes given by the bell.

The first part of the escapement consists of the wheel

cv the cam c
,
and the single -toothed wheel c, all rigidly con-

nected
; gearing with ^ is the wheel g, provided with a pin

on which the pawl / acts
;
and gearing with g is the wheel
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k, carrying a number of pins which move the hammer of the

bell as k rotates. The whole of this gearing is driven in the

sense shown by the arrows and is not directly connected

with the driving mechanism of the clock itself. Its move-

ment can only take place when the pawl / is dropped so

as to clear the pin on g. There 'Is, however, another way
of checking the motion of cv g, /, and k. Suppose that the

pawl / is released and that c
l
moves in the

sense^of
the arrow

FIG. 161.

from the position shown in the sketch. This motion will

continue, and the single tooth of c will engage with the teeth

on b until that sector has been lifted to its highest position

when c clears the teeth on the sector, and comes in contact

with the stop at the lower corner of b. It will be seen that

the cam C
Q performs another office, for it lifts the pawl a,

and releases 6, every time that the tooth on c is in gear,

and it also permits this pawl to drop and hold the sector b

during the time that the tooth on c is not in gear. The
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sector, the wheel and cam, and the pawl thus form a sepa-

rate locking and releasing ratchet-train and act somewhat

after the fashion of the train of 77.

The upper position of the sector is definite; the lower

position evidently depends on the position of the
' '

snail
' r

e. If this snail is driven by the clock in such a fashion that

it advances one division every hour, it is evident that the

range of the sector b will be altered every hour also. It

only remains to arrange that a spring h shall tend to make
the sector assume its lowest position, and that a pin on a

shall be lifted by / so as to release the pawl a and allow

the sector to drop whenever the movement of the train c
tgjk

is prevented by / .

The action of the whole escapement is then as follows:

When the wheel d (which is geared with the snail e) ad-

vances beyond the position shown, / drops and permits the

train c^gjk to be set in motion. The bell is then struck as

many times as is permitted by the range of the sector 6,

and that sector is left in its upper position ;
the motion of

b, c, g, and k then ceases. When d has made another revo-

lution and the snail has advanced one division, / is again

lifted, the pawl a is also raised, and the sector at once

drops, ready for the train to strike again as soon as g is

released by the further movement of the wheel d.

In an actual striking-train there will, of course, be twelve

divisions on the snail and a corresponding number of pins
on k.

The examples here described will serve to give some
idea of the nature of escapements of the first two kinds.

Adjustable or variable escapements form a most important
class of mechanisms from a practical point of view; they
are often of considerable complexity. For instance, the

steering-wheel, steering-engine, and rudder of a ship form

together a complex variable escapement. This will be

understood when it is pointed out that it is necessary for

the rudder to move through an angle exactly proportional
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to that through which the steering-wheel has been turned;
the motion of the steering-engine must then cease and the

rudder must be held until the steering-wheel is again moved.

FIG. 162.

Many kinds of lifting and hoisting mechanisms form varia-

ble escapements of this type; another well-known example
is the hydraulically controlled steam reversing- gear, often

applied to large marine engines.*
* See also Fig. 185, 89.
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As an example of an adjustable escapement of a more

simple kind, the " Weston Triplex" pulley-block has been

selected.* It is shown diagrammatically in section in Fig.

162. The link a forms the body of the block and has on it the

bearings of the rotating chain-wheel 6, with which the hoist-

ing-chain engages. By means of an epicyclic train bace (in

which the fixed annular wheel forms part of the link a), b is

driven by the rotation of a central shaft e. The hand-chain

drives the wheel /, which works on a fine-threaded screw cut

on e, in such a way that, when screwed up, a flange g is

compressed between the face of / and a corresponding flange

e secured rigidly to e. A friction-clutch is thus formed.

The flange g forms part of a ratchet-wheel g, connected with

a by a roller ratchet like that of Fig. 152. The action of the

block may be summarized thus :

(1) Hoisting. The hand-chain wheel / screws up on g
and turns the shaft e by means of the friction-clutch /g/ .

The ratchet gear gka runs freely.

(2) Standing. On ceasing to hoist, the load on the

hoisting-chain tends to turn e in the reverse direction; the

ratchet gear engages and holds the load.

(3) Lowering. On turning / in the reverse sense, g

being held by the ratchet, / is screwed back on its thread,

the friction-clutch is released, and the load is lowered so

long as f is kept in motion. On stopping / the motion of e

at once screws up the clutch and checks the load.

The contrivance is thus seen to consist essentially of a

rotating shaft driven by an automatic friction-clutch and

held by a stationary friction-ratchet, the whole forming an

adjustable frictional escapement started and released at

will, the motion of the central shaft imitating that of the hand-

chain wheel. It should be noticed that the action of the

machine differs in this important respect from that of a sim-

ple hoisting-block provided with an ordinary friction-brake.

* See Engineering, August 22, 1890.



CHAPTERS.

MECHANISMS INVOLVING NON-RIGID LINKS.

79. Non-rigid Links. In giving a definition of a machine
or of a mechanism we were careful to use the word ' '

resist-

ant" as applied to the material forming the links composing
the mechanism. Many essential portions of actual ma-
chines are non-rigid, but are nevertheless resistant, and

their occurrence, while it does little to complicate the

machine from a kinematic point of view, often introduces

dynamical problems of the greatest interest and difficulty.

The different classes of non-rigid links, -and pairs involving

them, have already been noticed; we have now to study
certain kinematic questions arising from their use.

In considering non-rigid links in mechanisms or machines

it is necessary to take account of the way in which their

form changes while in motion. One class of these links

is composed of those which, while very yielding as far as

bending or thrusting actions are concerned do not change
their length appreciably when a direct pull is applied.

Belts, ropes, and chains, which come under this head, are

therefore often of great use in machines where energy has

to be transmitted in changing directions. This, is usually

done by causing the flexible tension-links, in the form of

belts, ropes, or chains, to pair with, and communicate

motion to, rotating drums or wheels. On account of their

change of form, non-rigid links can have no virtual axes or

virtual centres

80. Velocity Ratio in Belt-gearing. Length of Belts.

The linear velocity of a rope or belt passing over two or

244
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more pulleys may be considered for kinematic purposes as

being the same throughout its length. In practice the

stretching of a rope or belt under load often has an appre-
ciable effect on the velocity ratio of the pulley it drives;

we shall here treat questions of velocity ratio as if the

belt or rope were inextensible. Fig. 163 represents a pair

of cylindrical pulleys connected by a belt, which may be
* '

open
"

or
"
crossed

' '

so that the pulleys rotate either in

the same or in opposite senses. We shall for the present

neglect the effect of the thickness of the belt or rope.

FIG. 163.

In these cases if V be the linear velocity of the belt and
R aR b

the radii of the pulleys, the angular velocity ratio will

evidently be found from the relation

R
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the negative sign corresponding to the case of a crossed belt.

It is, of course, assumed that there is no slipping.

The length of a belt is easily expressed in terms of the

radii and the distance d between the centres of the pulleys.

The total length of belt not in contact with the pulleys is

the negative sign here corresponding to the case of an open
belt. If 6 be the angle that the straight part of the belt

makes with the centre line of the pulleys, then the length of

belt in contact with the pulleys will be

26)(R a +R b )
for a crossed belt

and (TI + 26)R a + (n- 26)R b ,

or n(R a + R b ) + 2d(R a-R b)
for an open belt,

where 6= sin- l-a

~^-

The expression for the total length of belt will then be

for an open belt

and for a crossed belt

It will be seen that the length of a crossed belt is thus

constant so long as the sum of the radii and the distance be-

tween the centres of pulleys are constant quantities.

81. Belt-gearing for Variable Velocity Ratio. Fig. 164
shows the arrangement of "cone pulleys" employed in

driving machinery so as to render it possible, by shifting a
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oelt from one pair of steps to another, to obtain at will any
one of several velocity ratios. It is plain that the same

crossed belt will run with the same tightness on any pair of

steps so long as the sum of the radii of each pair is the same.

An open belt, however, is generally required, in which case

the tension will be different on each pair of steps, unless

FIG. 164.

their diameters are specially calculated. Approximate
methods for readily doing this have been devised,* while

Reuleaux f gives a rigorous graphical treatment of the prob-
lem. Referring to Fig. 163, we have as an expression for

the length of an open belt

/=

*Unvvin, Machine Design, Vol. I, p. 373 ; Smith, Trans. Am. Soc. M. E.,

Vol. X, p. 269.

J- Reuleaux, The Constructor. Trans, by Suplee, p. 189.
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NowR a-R b =dsinO; therefore

and

Similarlv,

Id d sin=
(cos- + smj) +

I d
R

b
=- (cos + sin 0)-

sin

27T 7T 2 .

Take a pair of rectangular axes OA and OB, (Fig. 165)
and make OA =d. Draw a curve CD, the involute of the

circular arc AC, having as its centre. Then, since the

4

2468 10 INCHES

FIG. 165.

angle must lie between o and 90, it must have some such

value as COE, in which case the line EF, tangent to AC
at E, and cutting the involute at F, has a length equal to

the arc EC. Hence EF = 6d, and, drawing KFH parallel

i:o AO, we have GH = EF sin 0, and

+ 0sin0).

Next make OB = nd and join AB. Draw AD parallel to

OB. Let HF meet AB in V and AD in T
;
then

OH
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and therefore KV = -
(cos 6 + 6 sin 0).

7T

Again, if we set off AL=-, and draw LM parallel to AO,

and cutting AB in M, we have

LM= .

27T

DrawMN parallel to BO and cuttingHK in A/", then

VN=KN-KV
I d=

(cos + sin 0).
27T 7T

To obtain the value of - - we need only draw a semi-

d
circle OQP having a diameter -

; then

OQ^.
Finally a curve DRST may be drawn by setting off VR =
VS =OQ, and repeating the construction as required. This

-gives

NR = VN+VR
I d. dsind=

(cos0-f 0sm0)+-
27T 7T 2

and NS = VN-VS
I d,

Q
. cfsinf

27T 7T 2

Thus /? - #,= V.R+ 1/5=5^.

Plainly for given values of / and d we can determine Ra

and R b
for any value of (or for any required velocity ratio)

by the aid of the curve DRST.
In practice it is usual to find that the diameters of the
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first pair of steps or their radii, R a and R b ,
are given, together

with d, the distance between centres of pulleys. The prob-

lem then is to find the radii of another pair of pulleys, R a

'

and R b

'

t
on which an open belt of the same length will run

7? '

with a given velocity ratio
-7^7.

* The author has found the

following a convenient method of utilizing the Reuleaux

diagram for solving this problem, and for finding inci-

dentally the length of belt required. This length, however,

is not often necessary, as it is more easily measured from

the pulleys when finished and in position.

Draw the rectangle AOB and the curve DRST exactly

as described above, and as shown in Fig. 165, making OA,

say, 10 inches in length. This diagram can be used for find-

ing pairs of radii of steps having any desired velocity ratio,

and the lengths of these radii will be obtained in terms

of d, the distance between the shaft centres. Having ex-

pressed R a and R
b ,

the given pair of radii, in terms of d,

it is easy, by applying a scale of inches and hundredths to the

diagram, to determine that position of the line SR which

will give the proper value to R a R
b . The length RN is

then measured to the proper scale and the point N found.

If required, the half length of the belt is then settled by
drawing the line NM, and the next thing is to find another

set of points R', 5', N' such that R'N' and5W will have the

ratio required for the radii of

the next pair of steps. This is

readily done by drawing on

tracing-paper a set of radiat-

ing lines (Fig. 1650), VX, VY'
,

VZ, arranged so as to cut all

lines perpendicular to VZ in the

7?'

required ratio, namely, --,-K L

It

FIG. i6$a. is convenient to draw another

line, VY, such that lines perpendicular to VZ are also cut in
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the ratio
a

. By applying this diagram to Fig. 165, the three
R

b

points R f

, S', A/
v can readily be pricked off in their proper

positions. When measured to the proper scale, R'N' and

S'N' give the values of the pair of radii required. In Fig.

7?
'

165 the ratio ^r, is 12.0, while
K

b

D~ is 6.0 and l = $.66d.K
b

If the real value of d is taken as 30 inches, while R
a
and R

b

are 25.2 and 4.2 inches respectively, the diagram gives for

R a
' and R

b

f the values 26.4 and 2.2 inches. An.open belt

of about 170 inches in length would run on either of these

two pairs of pulleys.

It should be noted that when d is large in comparison
with the size of the step pulleys, it is often sufficiently ac-

curate to proportion the latter as if intended to run with a

crossed belt
;
for this purpose the sum of the radii may be

made constant.

To make allowance for the effect of the thickness of the

belt or rope in our calculations it is only necessary to reflect

that we have really taken the thickness of belt as being

negligible when compared to the diameter of the pulley.

In practice this is frequently not the case. Suppose, for

example, that a belt whose thickness \i a quarter of an
inch is running on a pulley 6 inches in diameter. We
assume that while passing round the pulley the layer of

material at the centre of the thickness of the belt is neither

stretched nor shortened, so that the arrangement will be

equivalent kinematically to a pulley 6{ inches in diameter

on which a belt of negligible thickness is running. In other

words, we take it that the effective radius of the pulley is

in all cases to be measured to the centre of the thickness of

the belt or rope.

82. Velocity Ratio in Chain- and Rope-gearing. Rope*-
and chain-gearing is extensively used for the transmis-
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sion of power, as well as in machinery for hoisting, wind-

ing, and lowering. In many cases it is necessary to

provide the rope-drums or pulleys with guiding or re-

taining grooves. The various forms
of rope and chain tackle are too

familiar %o require extended notice

here, the ratio of the speed of the

rope to the speed of the body
moved by the tackle can always be

readily found. As an example, we

may take the Differential Pulley-
block of Fig 1 66. In this case the

upper block has two sheaves a and a'

rigidly connected or made in one

piece; the chain is prevented from

slipping on these sheaves by suitable

projections in their grooves. Evi-

dently on hauling in the sense shown

by the arrow, the loop or bight of the

chain passing around b will be short-

ened during each revolution of a and a' by an amount

equal to the difference of the circumferences of those

pulleys. Hence, if we call R
l
and R

2
the effective radii of

a and a' we shall have

speed of chain 2xR
l

speed of hoisting \ ( 2nR^

FIG. 166.

Sometimes it is desirable to arrange hoisting gear in such

a way that the velocity ratio is variable. For instance, in

the winding gear of a deep mine it is necessary to wind the

rope on a drum of continually increasing radius provided
with a spiral groove, so that when one cage is at the bottom,

its weight together with that of the attached rope may be

balanced by the smaller weight of the other cage alone

acting on a portion of the drum which is of larger radius.
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A similar device is employed in the "fusee "of a chro-

nometer.

In some cases shafts and pulleys are so connected by

chain-gear that their velocity ratio is not uniform through-

out the revolution. Fig. 167 shows one form of sprocket-

wheel and chain. The wheel is

furnished with teeth engaging
with the links of the chain and

effectually preventing slipping ;

these teeth should evidently
have profiles composed of cir-

cular arcs parallel to the paths
described by the centres of the

pins as they move relatively to

the wheel. On considering a

pair of such wheels connected

by a chain it will be seen that

if their pitch-circles are of unequal diameters, their velocity

FIG. 1670.

ratio will not be the same in every position. Fig. i6ya

represents the centre line of a chain connecting a pair of

sprocket-wheels ;
the wheels have four and eight teeth re-

spectively. When in the position shown by full lines, the

pair of wheels and the chain are equivalent to a four-bar

mechanism or quadric crank chain ABCD. Applying the
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construction of 28 we find that the velocity ratio is

w
b

AD'
But when in the position shown by dotted lines the velocity

ratio is

the equivalent position of the quadric crank chain being
AEGB. In sprocket- and chain- gearing as used for cycles

this inequality of velocity ratio may amount to from 5 to 1 5

per cent.

A form of chain used by Mr. Hans Renold for transmitting

power between two parallel shafts is shown in Fig. 168. The

FIG. ^168.

chain links have projections or teeth on their inner edges,

so formed as to gear with teeth on the wheel rims. It will

be seen from the diagram that these teeth profiles, the work-

ing portions of which are made up of straight lines, are so

arranged that the links enter and clear the wheel teeth with-

out appreciable sliding or rubbing motion. The angle em-

braced by the sides of the wheel-tooth profile is smaller the

smaller the number of teeth in the wheel. Chains of this kind

will work correctly even if slight stretching has taken place.

The periodical inequality of velocity ratio when the driving

and driven wheels are of different sizes is to be determined

for these chains in exactly the same way as for ordinary

pitch chains, the effective diameters of the wheels being, of

course, measured to the centres of the pins of the chain links.

83. Belt- and Rope-gearing between Non-parallel Axes.

It should be noted that belts and ropes may be used for
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transmitting power between shafts whose axes are not par-

allel; in some cases idle guide-pulleys are required in order

that the belt or rope may run satisfactorily. For this to be

the case one condition must be fulfilled, namely, that where-

ever a belt or rope is running on to a pulley the centre line

of the advancing belt or rope must lie in the central plane
of the pulley on to which it is running; i.e., in a plane nor-

mal to the axis and passing through the centre of the pulley.*

A number of cases of belt transmission between non-parallel

axes are illustrated here. The belt in Fig. i6ga can only

FIG. i6ga.

be run in the direction indicated by the arrows, the portion

RT lying in the plane of the pulley B, but not in that of A,
while the part SU lies in the plane of A. Similar remarks

apply to Fig. 1696, where, however, a guide-pulley is used.

In Fig. i6gc, it will be seen that if the guide-pulley C is

placed in a plane containing the parts of the belt 5 T and UT
every straight portion of the belt lies in a line which forms

*See Webb, Trans. Am. Soc. M. E., 1883, p. 165.
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the intersection of the planes of its pulleys ;
hence the belt

will run either way. Fig. i6gd shows the general case when
the axes are inclined. Any two points, X and Y, are chosen

on the line forming the intersection of the planes of the

pulleys A and B, and tangents XR, XS, YT, YU are drawn
to these pulleys. The "guide-pulleys C

l
and C

2
are then

I-

FIG. 1696.

placed in the planes XRS, YTU* respectively. Under these

conditions the belt will run either way. These examples will

serve to indicate the method to be adopted in arranging

belt-gearing when the axes of the shafts are not parallel.

Similar remarks apply to arrangements for rope-gearing,

but in this case, as the pulleys are grooved, guide-pulleys are

not so frequently required.

84. Springs. While belts, ropes, and chains are espe-

cially of use for transmitting energy, the flexible links known
as springs are of service where energy has to be stored up
and again restored when required. Problems connected
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with mechanisms involving springs will in general deal with

questions of Dynamics rather than with questions of Kine-

matics; it will be sufficient here to notice some cases in

which the energy of springs is employed for kinematic pur-

poses; i.e., for controlling or assisting the relative motions

of machine parts.

FIG. 169*-.

Springs are often used for the closure of mechanisms and

pairs. The spring h, for example, in Fig. 161 supplies the

force required to keep b in contact with e or in contact with

c, as the case may be. Certain springs in gun-locks fulfil a

similar purpose, and springs of the same kind form an essen-

tial feature in most ratchet mechanisms and escapements.
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In Fig. 170 the essential parts of the lock of a Winchester

rifle are shown. The lock mechanism contains two springs ;

the main-spring a is bent when the hammer b is drawn back

FIG. 169^7.

and cocked, and the energy stored in this spring is availa-

ble, when released, for striking the firing-pin c and thus

exploding the cartridge. The trigger-spring d bears on the

trigger e, which serves in fact as a pawl or detent for the

hammer. When the hammer is at half-cock the point

or nose of the trigger enters the first notch on the

hammer; the hammer is then secure, as the form of the

notch prevents the trigger from being pulled. When
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the hammer is placed at full cock, however, the point

of the trigger engages with the second notch, which

is of such a form that the trigger can be pulled and the

hammer released. While both these springs may be re-

garded as serving for purposes of closure, d has no other use;

a, on the other hand, stores up energy in the way already

described. The whole mechanism forms a locking and re-

leasing ratchet-train (see 77) which is spring-closed.

In many cases springs are used simply as means of storing

energy, a very familiar example being the coiled spring

FIG. 170.

which drives a clock or watch; in other instances they are

employed simply to control or modify the relative motion
of machine parts. The springs in a buffer, or the springs
which hold down a safety-valve, come under this heading.

85. Fluid Links. Pressure Pairs. It has already been

noted that we class under the name of spring those portions
of mechanisms whose elastic deformations, when the mech-

anism is in action, are considerable as compared with the

dimensions of the spring itself, and with the extent of motion

of the other links of the mechanism. According to this

definition we ought to include in our list not only solid

springs, but also such bodies as the air in an air-compressor,

which, although fluid, suffers elastic deformation.

Hydraulic machines, again, contain fluid links which do
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not sensibly change their volume under the pressures to

which they are subjected in working. Hence fluid links may
be divided into (a) elastic and (b) non-elastic links. As
has been previously stated, the changes of form and volume

of these links involve questions of dynamics which lie out-

side of the scope of the present work, so that we shall here

consider only in their kinematic aspect certain mechanisms

containing fluid links.

In every case the pairing of the fluid link with the solid

link or links containing it will be "pressure pairing" (see

9) ;
in using fluid links in mechanisms we therefore meet

with a constructive difficulty not found when employing

rigid material only, namely, that all moving parts in contact

with fluid under pressure have to be so made that no unneces-

sary leakage can take place. The means of attaining this

object is not important from a purely kinematic point of

view.

A large number of mechanisms containing fluid links will

be found to have as their counterparts mechanisms con-

taining rigid links only. We find, for example, many in-

7B
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that the volume of water displaced in a given time by C
must be equal to that entering the cylinder in which D
works. Hence the speed of D will be to the speed of C

inversely as their areas, assuming that the fluid is incom-

pressible and that no leakage occurs.

It is evident that under these circumstances the relative

velocity of C and D will be unaffected by the length or form

of the pipe or passage communicating between the cylinders.

These might in fact be separated by a considerable distance,

in which case the mechanism would serve for the hydraulic

transmission of energy. Such transmission is found of

great utility under certain conditions. Similarly arrange-

ments for the transmission of power by compressed air have

been devised
;
in either case it is the fluid link which renders

this type of transmission possible and economical.

86. Chamber Crank-trains. The most important appli-

cation of the crank-chain in machine construction is its use

in kinematic combination with a fluid link for the purpose
of an "engine" or prime mover, or for the purpose of a

"pump" or machine for moving or compressing the fluid.

The fluid link may consist of steam, air, gas, or water, and

the mechanism must include a suitable chamber for enclos-

ing it. We proceed to give a few examples of such chamber

crank-trains, selected from the numberless instances of every-

day occurrence.

Any of the inversions of the slider-crank chain of Chap-
ter IV may be converted into a chamber crank-train if we
make one of its links into a vessel or chamber and convert

another link (in some cases two others) into a plate or dia-

phragm moving in the vessel in such a fashion that the fluid

link occupies the space enclosed. As the mechanism oper-

ates, the effective volume available for the fluid link is

changed and the fluid expands, or is compressed; it enters

or leaves the vessel or chamber in conformity with the alter-

ation in volume and the conditions under which the ma-
chine is working. The ordinary direct-acting steam-engine
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is a familiar example and is derived from the turning slider-

crank of Fig. 60. The link c forms the piston or movable

diaphragm, while the link d takes the shape of the cylinder
in which the piston travels. In some instances the cylinder
or chamber is so formed as to enclose partially or completely
the links a and b. Fig. 1^2 shoWs diagrammatically how
this is done in the case of the small enclosed petroleum or

gasoline motors so much used for the propulsion of auto-

mobiles and boats. In Fig. 68, again, the swinging block

slider-crank is used as an oscillating steam-engine ;
c is now

the cylinder and d the piston and rod.

FIG. 172. FIG. 173.

It is also possible in the swinging block slider-crank to

convert the fixed link into the chamber. Fig. 173 shows

a method of doing this, suggested by Reuleaux. On con-

sideration it will be obvious that this arrangement, like

many others quite possible kinematically, will not be likely

to give satisfactory results in practice. The mechanical

difficulties of making the contact between c and b sufficiently

good to avoid leakage, and at the same time so free as to

avoid fractional loss, are so great that a large number of

possible chamber crank-trains are of no practical value.
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Passing on to the turning block slider-crank chain of Fig.

73, this has been converted into a chamber train, and was

originally proposed as a steam-engine by Lord Cochrane

in 1831 and 1834, Probably the inventors of so-called
' '

rotary
' '

engines and pumps have nowhere found so exten-

sive a field for their ingenuity as among mechanisms derived

from this kinematic chain. One form of the Cochrane en-

gine is shown in Fig. 174. Here the rotating chamber is

formed from the link b of Fig. 73*2, and has line contact

with the link d. The fixed link a (corresponding to the

crank in a direct-acting engine) forms the frame or support
of the mechanism, and the working fluid expands in the

spaces enclosed between b, c, and d.

The swinging slider-crank when used as a chamber train

has already been shown in Fig. 74.

FIG 174. FIG, 175-

From the double slider-crank chain a number of chamber
trains can be derived. Fig. 79 shows one form the com-
mon donkey-pump. In Fig. 175 we have a form of steam-

engine proposed by Root in 1864 and since revived by other

inventors. On comparison with Fig. 77 or 79 the corre-
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spending links will be readily recognized. In the Root

engine the rectangular spaces enclosed between the links

c and d and between b and c are used as chambers to receive

the working fluid; their varying volume serves for the ex-

pansion of the steam. It should be noted that this form

of engine does not involve thef'use of higher pairing, and

there is not the difficulty experienced in so many chamber
crank-trains in preserving a steam-tight joint. When the

surfaces between a, b, c, and d are adjusted so closely as to

avoid leakage, there is in practice found to exist a consider-

able amount of friction, and the accuracy of adjustment is

easily destroyed by expansion due to any slight local varia-

tions in temperature of the different parts of the engine.

It is for reasons of this kind that no form of chamber crank-

train has yet been able to compete in practice with those

types derived from the turning slider-crank.

It is, of course, to be understood that in a chamber crank-

train used as a "motor or pump suitable provision must be

made for the government of the admission and outflow of

the working fluid. This is sometimes effected by arranging
the necessary openings and passages so that they are opened
or closed by the motion of the solid links themselves. More

frequently it is necessary to provide a subsidiary ratchet-

train or valve-gear, which forms no essential portion of the

original machine, if we consider only the motion and pairing

of the solid links, the object of the valve-gear being simply
the control of the fluid link. These mechanisms are con-

sidered further in 89.

87. Chamber Wheel-trains. Reuleaux divides motor-

mechanisms containing
' '

pressure organs
' '

or fluid links into

two classes. We have first those mechanisms in which the

motion is more or less intermittent, so that the whole ma-
chine forms a "fluid ratchet-train." The kinematic chains

discussed in the last section, when provided with the neces-

sary valve-gear, belong to this class. The second class

includes those
' '

running mechanisms
' '

in which the motion
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of all the solid links is continuous, and we now proceed to

consider some examples of this kind of chain, formed by
modifying certain wheel-trains in such a way as to constitute

a chamber wheel-train. The chamber is, in general, formed

from the frame of the wheel-train and carries the wheels by
means of simple turning pairs. The fluid or working sub-

stance occupies the space between the wheels and the cham-

ber, and such mechanisms, in spite of certain mechanical

disadvantages, are often used as pumps or motors, or as

meters for measuring the amount of fluid passing through the

chamber.

The chamber wheel-trains which are simplest from a

kinematic point of view are those containing only one wheel

and the necessary chamber and passages for the guidance of

the fluid link. In Fig. 176, for example, is shown diagram-

FIG. 176.

matically a centrifugal pump, the whole mechanism consist-

ing of the pump-casing a, the wheel and shaft 6, and the

fluid c. A turbine, or water-wheel, of course falls into the

same class.

Figs., 177^, 1776 and 177^: show three types of chamber

wheel-gear amongst many which have found some degree of

favor in practical use as pumps or motors. Fig. 177(2 is the



266 KINEMATICS OF MACHINES.

FIG. I77.



MECHANISMS INVOLVING NON-RIGID LINKS. 267

Pappenheim chamber wheel-train, consisting of a pair of

equal toothed wheels, having continuous tooth-contact, while

the points and sides of the teeth fit as closely as possible to

the walls of the chamber. This train has been utilized to a

considerable extent as a pump for water, the volume dis-

charged per revolution being evidently equal (if leakage
is neglected) to twice the volume of the tooth-spaces of one

wheel. Such a pump is, of course, most suitable for running
at a high speed and against a low pressure. Fig. 1776

represents the well-known Root blower, the action being
identical with that of the mechanism of Fig. 177(2. The
wheels in this machine have, however, only two teeth each,

and external gearing is required to maintain constant contact

between the teeth. Epicyclic chamber wheel-trains are some-

times employed. Fig. 1 7 jc represents the mechanism of the

FIG. 177*:.

Hersey water-meter. Here one wheel forms the case a, while

the rotating shaft b (not shown) carries an eccentric-pin on
which works the

' '

rotary piston
"

or wheel c. It will be at

once seen that this arrangement is really an epicyclic train.

Inventors have eagerly sought to discover some kind of

chamber wheel-train in which the more or less imaginary

disadvantages of the reciprocating engine or pump are
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avoided. Almost every conceivable form of such gear* has

been invented and reinvented and used with varying suc-

cess. No enthusiast, however, has yet succeeded in pro-

ducing a machine which is a serious competitor with the

ordinary direct-acting engine or pump formed from the

slider-crank chain when 'used fof the same kind of work.

88. Ratchet-trains Containing Non-rigid Links. The

classification of Ratchet Mechanisms in general has been

considered in the last chapter ;
we have now*to study exam-

ples of those ratchet-trains which contain non-rigid links.

Fig. 178 shows diagrammatically
the construction of a common lift-

pump. On comparing Figs. 178

and 153 we find in each case a

body b to be raised or lifted by the

action of a pawl c, moved by a

running-ratchet train. In the

pump this pawl takes the form of

a non-return valve carried in the

pump-bucket d. The body of the

pump corresponds to the frame a

in Fig. 153. Further, it is plain

that to keep the fluid in the pump
from running back we must provide

a foot-valve c' corresponding ex-

FlG J 78. actly to the pawl c' in Fig. 153.

We have here in fact a checking-ratchet train abc' exactly

as in the mechanism of Fig. 153. The common lift-pump is

then a combination of two ratchet-trains acting on the same

link, and this link is the fluid which is being pumped.
In pumps special devices are often necessary to obtain

a more continuous motion of the fluid than is possible with a

single-acting ratchet-train. Fig. 179 shows diagrammatically

one example of this a pump of a type sometimes used

* See Reuleaux, Kinematics of Machinery, Chapter X; Burmester, Lehrbuch

der Kinematik, 96-109.
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for operating a hydraulic accumulator. Here the pump-
piston d is provided with an enlarged rod d

1
of cross-section

approximately equal to one half the area of the piston or

bucket. Thus during the stroke from left to right one half of

the fluid passing the valve c
z

is compelled to issue through
the valve c

3 ,
and one half enters the pump-barrel. During

the reverse stroke this remaining half is expelled, and

another volume of fluid enters the pump through the valve

cr This "differential" pump, therefore, gives a fairly con-

tinuous discharge, but differs from a double-acting pump

d

FIG. 179.

in that its suction is not continuous, but only occurs during
one stroke of the bucket. We have in this case an example
of the combination of three running ratchet-trains.

In Fig. 1 80 is shown an ingenious form of pump in

which only one set of valves is required, the pump-piston
itself performing the function of a releasing ratchet. The
Edwards air-pump is used for pumping air and water from

the condenser of a steam-engine. The bucket or plunger
P has no passage through it, and during the downward

stroke, while the head valves V are closed, the pressure in the

space A is reduced, so that air passes in from the condenser

through the ports BB as soon as these are uncovered. At
the same instant the plunger on reaching the bottom of its

stroke has displaced the water from the bottom of the pump
and has driven it through the passage C into the space above
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the bucket. The air and water are then discharged on the

upward stroke. It will be seen that we have here a releas-

FIG. 180.

ing-ratchet train in which the ratchet (the pump-plunger)
itself propels a portion of the fluid to be moved, and also

prevents it from returning. When at the lowest point of its

stroke the piston in uncovering the ports has acted as a

FIG. 181.

driving and releasing ratchet, first opening the passages B
and then propelling the fluid through them.

From this point of view we may regard any sliding-valve
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as a checking and releasing ratchet. Fig. 181 shows a lon-

gitudinal section through the cylinder of a steam-engine

provided with a piston-valve, and it will be seen that this

valve uncovers the steam-ports and admits and cuts off the

steam just in the same way as the bucket of the Edwards

pump uncovers its ports. The slide-valve of a steam-engine

is, however, only a checking and releasing ratchet
;

it has no

part in propelling the fluid.

Valves and cocks are frequently employed as brakes,

and they then form parts of frictional ratchet-trains in which

the moving link is a fluid. In Fig. 182 we have a diagram

FIG. 182.

of an arrangement used to control the longitudinal move-

ments of a rod R. A piston P works in a closed cylinder

filled with fluid, and the two ends communicate by means

of a passage wrhich can be wholly or partially closed by
rotating a cock C. A valve would, of course, answer the

purpose. Here the partial closing of the cock or valve

opposes a frictional resistance to the movement of the fluid,

and therefore also to the movement of the piston, and in fact

the cock or valve acts as a checking ratchet. Somewhat

similar arrangements may be devised to act as hydraulic

brakes in the case of rotating shafts
;
the well-known Froude

brake is an example where the necessary resistance to the

motion of an engine-shaft is obtained by attaching to the

shaft a special rotary pump which discharges its water

through a small passage.

Ratchet-trains often contain belts or other flexible links.
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The strap brake of Fig. 183 may be looked upon as a frac-

tional checking-ratchet train. The fixed link of the train is

not shown, but it will be easily seen that the strap corre-

sponds in function to the brake-block and lever of Fig. 159.

Flexible links are occasionally used in clutches, which,

FIG. 184.

as we have already seen ( 77), are really stationary ratchet

trains. Fig. 184 shows the longitudinal section of a coil

clutch, whose purpose is similar to that of the friction clutch

of Fig. i5ga.

The action of the contrivance may be explained as follows :

The driving shaft A has firmly secured to it the hollow

drum AV inside which is a metallic coil A
2 loosely enclosing

the pulley Br which is keyed to the driven shaft B. One

end of the coil (at C) is fixed to A v the other end has upon it
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a radial projection and can be rotated so as to cause the

coil to grip the outer surface of Br This rotation is ac-

complished by slightly turning the lever D on its pin by the

aid of the sliding sleeve E, which can be moved along
the shaft by means of a fork engaging in its groove. When
pushed in, the conical end of E pushes aside the lower arm of

the lever D and closes the coil. Such a clutch will only
drive one way, but the numerous turns of the coil on the

drum give it enormous frictional resistance, and the end

pressure on the shaft A is not large. The whole arrange-

ment forms a fractional ratchet-train.

89. Pressure Escapements Containing Fluid Links. We
have classed under the term escapements certain checking-

and releasing-ratchet trains which are so arranged that the

moving link is alternately released and checked by the

action of the mechanism itself. Escapements containing
fluid links form a class of machines which are of the utmost

importance industrially, and some examples of such mech-

anisms will now be considered, following the nomenclature

of 78. It was there shown that escapements are really

ratchet-trains which work automatically, and in the same

way a self-acting fluid-ratchet-train may be said to be a

fluid or pressure escapement, the driven or moving link

being the \vorking fluid.

A steam-engine or fluid motor which is provided with a

governor regulating and rendering uniform its rate of motion

obviously answers to our definition of a uniform escapement.

In a properly governed steam-engine or gas-engine we may
compare the function of the governor with that of the pen-
dulum or balance-wheel of a clock or chronometer, while

the escapement is evidently represented by the valve-gear.

The valves themselves control the range of movement of

the working fluid, exactly as the ratchets in a clock escape-

ment control the range of movement of the escape-wheel.

Periodical fluid escapements are not of frequent occur-

rence. We may perhaps class under this head such contriv-
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ances as gas- and water-meters, which vary their rate of

motion in proportion to the quantity of fluid passing per unit

of time.

Adjustable or variable fluid escapements are of consider-

able importance. A large number of pressure mechanisms

corresponding somewhat' in their mode of action to the

hoisting machine described in 78 are used as steering- or re-

versing-gears. Such a contrivance consists essentially of a

controlled motor (moteur asservi) so arranged that when

started by the admission of the working fluid the motor

itself closes the admission-valve, and therefore stops unless

the controlling valve is still further opened by hand. This

FIG. 185.

will perhaps be made clear by an example. The slide-valve

controlling the admission and exhaust of steam to the cylin-

der in Fig. 185 is connected to a system of levers as shown.

When the lever 6' is moved by hand in the sense shown by
the arrow, steam is admitted through the port Pl

while the

port P2
is placed in communication with the exhaust. The

piston c moves in response, and, if the lever c' is properly

proportioned, gives the valve b a backward motion exactly

equal to the forward movement it received from the hand
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lever b'
'

. Thus the piston c follows the motion of the hand-

lever b''. It will be obvious that kinematically this mechan-

ism is of the same general class as the hoist previously

described, and is accordingly an adjustable escapement.*
A large number of fluid-ratchet-trains and escapements

are discussed by Reuleaux.f

* For a description of Brown's interesting and ingenious steering-gear, in

which the whole engine is made to move and then stops itself after turning the

rudder through the required angle, see Engineering, Vol. XLIX, p. 491.

t Constructor, 319-332-



CHAPTER .^XI.

CHAINS INVOLVING SCREW MOTION.
|fc

90. Formation of Screw Surfaces. It has already been

stated (8) that lower pairs of elements can be con-

structed in which the surfaces in contact are screws of uni-

form pitch. Fig. 1 86 serves to illustrate the formation of

\ A

FIG. 186.

such surfaces. Imagine that a cylinder ABCD is caused

to rotate with uniform angular velocity, as indicated by the

arrow, and let a cutting tool whose point is ground into the

shape PQRS be moved with uniform linear velocity v in

a direction parallel to the axis of the cylinder, so as to cut

out a continuous groove in the material of the cylinder.

If now the tool is so set that the lines PQ and SR when pro-
276
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duced pass through the axis of the cylinder, the surfaces

forming the side of the groove will be screw or helical sur-

faces of uniform pitch. It will evidently be possible to

form in a somewhat similar manner a hollow cylinder hav-

ing the material of its inner surface removed in such a way
as to leave a projecting thread of such a form as will exactly
fit into the groove PQRS. The inner surface of this nut

will be the exact counterpart of the outer surface of the

screw, and when working together their relative motion

must be a copy of the original relative motion of the cutting

tool and the cylinder. In other words, the only possible

relative motion of such a screw and its nut will be a motion

of rotation, combined in a constant ratio with a motion of

translation along the axis of rotation. By the term pitch

we mean the distance (measured along the axis of rotation)

through which the nut moves relatively to the screw during
one complete relative rotation. Thus if CD be the angular

velocity of the cylinder in radians per second, the time of

one complete rotation will be -- seconds. During this time

the cutting tool will have moved a distance
;
this expres-w

sion therefore gives the numerical value of the pitch. If we

imagine that a piece of paper wrapped round the cylinder

has the outline of the screw-thread marked upon it, and is

then unwrapped, the line representing the edge of the screw-

thread will be found to be straight, and it will make with the

line representing the edge AB of the cylinder an angle such

as LMN. A little consideration will show that the tangent
of this pitch-angle will be

pitch of thread

circumference of cylinder*

It is quite easy to arrange a mechanism which will cut a

screw-thread of variable pitch. This is, in fact, often done

in rifling guns. In this case, if the angular velocity of the

screw is uniform, the linear velocity of the tool must be
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variable, and the pitch-angle changes as we go along the

thread. A hollow surface the exact counterpart of the

screw would then only fit exactly in one position, and no

relative motion of such a pair of surfaces would be possible.

It is for this reason that a screw pair composed of rigid

elements must consist of' screw resurfaces of uniform pitch.

The section of the thread, as governed by the form of the

cutting tool producing it, may be of any convenient form,

and a number of standard threads are described in text-

books on machine design. The reader should note that

screws are often made with two, three, or a larger number

of threads by cutting the required number of independent

grooves on the cylinder. These threads may further be

either right- or left-handed. The thread in Fig. 186 is

right-handed; Fig. 187 shows a left-handed screw having

FIG. 187.

three threads. We shall see later that these multiple -

threaded screws are of importance in screw mechanisms

involving higher pairing, and we now consider certain cases

in which lower pairing of screw surfaces is used in chains

containing rigid links only.

91. Screw Mechanisms Involving Lower Pairing of Rigid

Links. The relative motion of screw links is in general

non-plane. On examination it will be found that in a screw

and its nut, while there is at any instant rotation about the

axis of the screw, there is also a simultaneous linear move-

ment along that line. In more complex cases of the screw



CHAINS INYOLWNG SCREW MOTION. 279

motion of two bodies it has been pointed out * that there is

at any instant a line common to the two bodies, called the

twist axis, about and upon which each body is (at the instant

FIG. 188.

considered) turning and sliding relatively to the other body.
In this work but little space can be devoted to the consider-

ation of relative motion of this complex character, and in this

section we shall discuss some of the simpler screw mechan-
isms involving lower pairing.

The simplest screw chain is shown in Fig. 188; it com-

prises three pairs a screw pair ab, a turning pair ac, and a

sliding pair be. This chain is of common occurrence in

the form of a screw press. By a suitable choice of the pitch

of the screw we can obtain a machine in which a large

angular motion of a gives us a comparatively small linear

motion of 6, so that in a copying-press, for instance, a large

pressure is obtained by applying a relatively small force to

the end of the screw arm.

If the screw has a sufficiently fine pitch this machine

cannot be reversed
;
that is, it is not possible by the applica-

tion of an axial force to the nut b to cause rotation of a.

By making the pitch of the screw sufficiently great, how-

ever, this action becomes possible, as in the common Archi-

medean drill.

A little consideration will show the reader that we may
look upon a sliding pair as a screw pair of infinite pitch,

while a turning pair is also a special case of a screw pair in

which the pitch is zero. Accordingly we may expect to

*
Kennedy, Mechanics of Machinery, 68.
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find mechanisms of three links containing two screw pairs

and a sliding pair, or two screw pairs and a turning pair

(as shown in Figs. 189*2 and 1896), the pair be or ac in Fig.

FIG 189^.

1 88 having been modified into a screw pair. Further, it is

possible to transform the last remaining turning pair of

Fig. 1896 into a screw pair and obtain a chain of three links

and three screw pairs. The reader should have no difficulty

in sketching for himself such a chain.

FIG. 189/7.

Fig. 189(3 represents the chain containing two screw

pairs and a sliding pair, as employed in a form of steering-

gear; the complete gear forms a compound chain of seven

links, four of which (shown by dotted lines) are added to

the screw chain itself. The screw a, on which are cut two

separate threads, right- and left-handed respectively, gears
with two nuts b and c which evidently have a relative sliding

motion, approaching or receding from each other as a

rotates. The links / and g connect b and c to the arms of a



CHAINS INYOLyiNG SCREW MOTION. 281

yoke e secured to the rudder head. The frame or fixed link

d is the hull of the ship, to which are fixed the bearings in

which a and e rotate. Plainly, rotation of a will cause the

rudder to turn.

Fig. 1896 shows the chain containing two screw pairs
and a turning pair. Its most important application in

practice will be discussed when we deal with screw chains

involving fluid links. (See 92.)

A great variety of more complex screw chains are in

practical use. Fig. 190 shows a crossed screw chain often

employed as a portion of the reversing-gear of steam-engines.

It consists of five links and contains a screw pair ab and

.EVERSING SHAFT

FIG. 190.

four turning pairs. The rotation of a hand-wheel on a

moves the reversing-shaft from its position when the engine

goes ahead to the position when the engine is in backward

gear.

The mechanism of Fig. 190 is a simple example of a class

of mechanisms involving general screw motion, in which the

relative motions of the links are often very complex. The

majority of such chains, in fact, have not been worked out

kinematically, but the more complicated general screw

mechanisms find so small a field of usefulness that we shall

not devote any space to them here.
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92. Screw Mechanisms containing Fluid Links. One o

the simplest screw mechanisms containing a fluid link is the

rifled gun shown in longitudinal section in Fig. 191. This

train consists essentially of three links. We have the gun
itself, a, having traced --upon the surface of its cylindrical

bore the rifling, in the shape of a many-threaded hollow

screw shown in cross-section at AB. The projectile or shell

b is introduced at the breech of the gun, which is closed by
a screw-plug or breech-block, and the projectile is provided
at its base with one or more copper driving-bands, which are

SECTION ON A-B
FIG. 191.

of such a size that when the projectile is forced through the

bore the projecting portions of the rifling cut into the copper,

and in this way cause the shell to rotate. The third link, c,

is of course the gas which is produced by the combustion of

the charge, and which exerts the pressure necessary to propel

the shell. It should be noted that the pitch of the rifling

has to be large, compared with the calibre or diameter of the

bore of the gun. Frequently the pitch of the rifling is not

uniform, but is so designed as to decrease from the breech
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to the muzzle in such a way as to give as nearly as possible

uniform angular acceleration to the shell.

In Fig. 192 is represented a mechanism which is a special

case of the screw-chain used for such important purposes
as the propulsion of ships (screw propeller), the measure-

ment of speed through fluid (anemometer, patent log), the

FIG. 192.

utilization of the energy of the wind (windmill), and so on.

The figure shows diagrammatically a screw conveyor used

for the purpose of forcing broken coal from the hopper H
into the furnace F of a mechanical stoker. We have here

a rotating propeller a of peculiar form
;

it is contained in a

casing 6, and acts on the powdery material enclosed by the

casing. The reader will note that in the screw propeller of a

ship we have exactly the same mechanism, except that the

outer casing is used only under special circumstances,* and
the material acted upon is fluid.

The mechanism of Fig. 1896, when modified by the

substitution of a fluid link for the piece 6, takes the form of

the parallel-flow (Jonval) turbine of Fig. 193, and is used

for purposes of motive power. Here c, the turbine-casing,

carries a bearing for a, the hollow shaft, and also has upon
it a number of fixed guide-blades corresponding kinemati-

cally to the hollow screw-thread of Fig. 1896. The fluid,

*Barnaby, Marine Propellers, Chapter VII.
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rushing past these blades, encounters the blades of the

turbine-wheel a, to which it communicates motion. The

kinematic correspondence of the two mechanisms is evident.

It should be noted that the surfaces of the guide-blades

and buckets of a turbine, or of. the blades of a propeller,

-FIXED SUPPORT FOR SHAFT

, ROTATING HOLLOW SHAFT

FIG. 193.

are not necessarily true helical surfaces. With solid links

we have seen that in order to obtain lower pairing the

screw surfaces must have uniform pitch. The adoption of

a varying pitch in the rifled gun is only possible because

the copper driving-band, which pairs with the rifling, is nar-

row and so soft as to be deformed with comparative ease.

When we consider the pairing of fluid links with such sur-

faces, however, the mobility of the fluid permits of great

latitude in the form of the curved surface over which it flows.

. We have so far considered only screw-threads traced

upon a cylinder, but there is no reason why such threads

should not be formed on a conical surface, or indeed upon

many surfaces of revolution. Fig. 194 shows a thread cut
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upon a globoid, for instance, Let us now imagine a screw-

thread traced upon a conical surface, as is the case in some
forms of self-centring chuck,* or in the breech-blocks of

certain quick-firing guns.f From such a screw-thread it is

FIG. 194.

but a step to the formation of such a surface as that of

the vane of the wheel of a centrifugal pump (Fig. 176) or

the vane of a radial-flow turbine, where the blades form

what may be termed a screw surface projected on a plane.
The kinematic chain of Fig. 176 is then really a modification

of that shown in Fig. 193, the guide-blades being suppressed,
and the whole forming a pump instead of a motor. The
curves of the blades in a centrifugal pump are formed in

such a fashion that their rotation impels the fluid from the

centre to the outside of the pump-casing. They are thus

spiral in form, or may even take the shape of radial straight

lines.

93, Screw-wheels and Worm-gearing. In machine con-

struction screws are employed not only in lower pairing for

driving, or being driven by, rigid nuts, but also, in higher

pairing, for gearing with rotating toothed wheels. In this

case contact between the screw and the link with which it

* " Horton
"
chuck. f Engineering, Vol. LXI. p. II.
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pairs takes place either along a line or at a point. The

ordinary worm and worm-wheel is the most familiar example
of such gearing. Fig. 195 represents in plan and elevation

Cl

FIG. 195.

two cylindrical wheels, a and b, whose axes AB and CD do

not intersect and a*re at right angles in plan. The wheels

are in contact at the point through which passes LO'M,
the common perpendicular to AB and CD. The length of

this common perpendicular is of course the sum of the

radii of the two cylinders. Let a helical line or screw-thread

be traced on the surface of a, so as to pass through the com-

mon point 0, the pitch-angle of this helix being XOC. Also
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suppose that a second helical line, not shown on the diagram,
of pitch-angle XOA, is traced on the surface of b. so as also

to pass through the point 0. The two helices will then

touch at that point, and the line XOY will be their common
tangent. If now the helix on b is replaced by a projecting

thread, while that on a is converted into a corresponding

groove into which the thread gears, any rotation of a about
its axis AB will cause the rotation of b about its axis CD,
and this relative motion of a and b will be continuous if we

provide a series of projecting threads on b so spaced as to

come into gear in succession with the thread or groove on a.

It will be noted that, in Fig. 19 5, a is a single-thread screw,

while the wheel b is a portion of a many-threaded screw, the

number of threads on b being equal to the number of times

that the pitch p is contained in the circumference of b. We
can, however, evidently make pairs of screw-wheels in which
a as well as b is a portion of a many-threaded screw, and a

pair of such wheels is shown in Fig. 196, the teeth or threads

being represented by the inclined lines. In speaking of the

pitch of the teeth of these wheels, we must distinguish be-

tween (i) the helical pitch, or pitch of the screw-thread (p in

Fig. 195) ; (2) the normal pitch, or distance from centre to

centre of teeth, measured at right angles to their length (q in

Fig. 196) ; (3) the circumferential pitch (r, Fig. 196) ; (4) the

axial pitch, or distance from centre to centre of teeth meas-

ured parallel to the axis of the wheel (s, Fig. 196). A little

consideration will show that in a pair of screw-wheels the

circumferential pitch of each must be equal to the axial

pitch of the other, supposing that, as in the figure, the axes

of the wheels are at right angles in plan.

We have now to find the angular velocity ratio of the

wheels a and b. It is plain that since the teeth of a and 6,

while the wheels rotate, remain in continuous contact, their

velocity measured along a line drawn perpendicular to their

common tangent at the point of contact and lying in the

plane which touches both wheels must be equal. In Fig. 197
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this common velocity is represented by the line v
c
. Now

let o) a and wb be the angular velocities of a and b respectively,

while ra and r
b
are their radii. Then if v a ,

v
b
are the actual

linear velocities of points on the pitch-circles of a and 6, we
have

The lines OL and OM in the figure are supposed to be

FIG. 196.

drawn in the plane touching both wheels, and represent in

magnitude and direction the linear velocities of the respect-

ive pitch surfaces. ON is drawn in the same plane, and

represents vc ,
the common velocity of the teeth of both wheels

measured in a direction perpendicular to the common tan-

gent of the teeth.

The velocity va may be resolved into two components,
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namely, ON, the velocity of a point on the tooth of a resolved

in a direction normal to the line of the tooth, and NL, the

velocity resolved along the line of the tooth. Similarly OM

FIG. 197.

may be resolved into two components at right angles, ON
and NM\ as we have seen, the component normal to the

line of contact of the teeth must be the same for both wheels,

because it represents the common velocity v
e

. The line LM
will represent the relative linear velocity (along the tooth)

of the pitch surface of the wheel a relatively to that of the

wheel b, or the speed with which the teeth slide lengthways
over each other.
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Now consider the circumferential and axial pitches of the

two wheels. From the figure, by similar triangles

_^____ _
v

b
OM QR circumferential pitch of b

.^circumferential pitch of a

circumferential pitch of 6
'

and

- * circumf. pitch of a= _ _
a>

b
v
b

'

r
a

nr
a

circumf . pitch of b

_ number of threads on b

number of threads on a

It is thus seen that in screw gearing of this kind the

velocity ratio is independent of the sizes of the wheels, and

depends solely on the number of threads with which they
are provided.

A particular form of screw-gearing is frequently em-

ployed to transmit motion with a high velocity ratio

between shafts at right angles in plan. The smaller wheel

has only one, two, or three threads, of small axial but large

circumferential pitch, and is known as a worm, while the

worm-wheel has many teeth, of small circumferential but

large axial pitch. The velocity ratio is, as we have just

seen, simply the inverse ratio of the number of threads.

Worm-wheels of good design have the form of their pitch

surfaces modified so that their teeth are no longer screw-

threads traced on a cylindrical surface, but are formed so

as to obtain a larger area of contact between the teeth than

would be possible in the case of a cylindrical screw-wheel.*

The teeth of a pair of accurately formed cylindrical screw-

wheels of rigid material would only touch in a point; in

practice there would of course be a very small but percepti-

ble area of contact. Such wheels are therefore most suit-

able for light loads; and for heavy service, worm-gearing,
in which the screw-thread and wheel-tooth may have line

* See 94.
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contact, is preferable. Fig. 198 shows the appearance of

screw-gearing and worm-gearing as actually made.

The axes of a pair of screw-wheels may of course make

any desired angle in plan with one another. In a given

case, when this angle, the sum of the radii of the pitch

surfaces, and the velocity ratio have been decided, a number
of different pairs of wheels may be designed which will obtain

FIG. 198.

the intended result
;
the difference between them depending

on the pitch-angles which are selected. A numerical exam-

ple will make this clearer. Suppose that screw-gearing is to

be designed to connect two shafts making an angle of 60

in plan, the shortest distance between the axes being 10

inches, and the velocity ratio three to one. Two solutions

of this problem are shown in Fig. 199. In the first case a

pitch-angle of 60 has been chosen for each wheel
;
in the

second case the line of contact of the wheel-teeth is parallel
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to the axis of b, and the pitch-angles of the wheels a and b

are respectively 30 and 90.. The wheel b is thus a spur-

wheel. The velocity diagrams showing the relation between

v
a ,
v

b ,
and v

c
are drawn in the two cases. In order to deter-

mine the radii of the pitch surfaces of the wheels, we have in

the first case

But -*^ and L_. Hence
r
b

v
b
" a

co
a 3

*jzJL
r 3*

The distance between the axes being 10 inches, plainly

In the second case v
a
= 2V

b \ hence, since = as before,
a 3

:- r
b 33

so that ra
= 4" and r

b
= 6".

In both cases the number of teeth on the wheels a and b

must be in the ratio 1:3, but in the first case the wheels

have the same circumferential pitch, and the radii are there-

fore inversely as the angular velocities
;
while in the second

case the circumferential pitches of the wheels a and b are in

the ratio 2 : i, so that the radii are in the proportion 2:3.
From the diagrams it is evident that the sliding velocity of

the teeth will be in the first case

Vs=v a =vb ,

and in the second case

It is noteworthy that for the same speeds of the shafts in

the two cases v
a will be greater in the second instance than in

the first in the proportion of 4 : 2 . 5 . Hence the sliding veloc-

ity of the teeth will be greater in the second design in the pro-

portion 2\/3 : 2.5, or nearly 1.39 : i. This is shown in the
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figure, where the velocity diagrams, shown in heavy lines,

are both drawn to the same scale. In screw-wheels the

sliding velocity of the teeth is a minimum when the wheels

have the same pitch angle.

FIG. 199.

94. Forms of Teeth in Screw-gearing and Worm-gearing.
The cylinders shown in the previous figures are of course

intended to represent the pitch surfaces of the actual screw-
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wheels. We have seen that the relative linear motion of

these surfaces in the plane which touches them both is com-

posed of a relative sliding motion along the line which is the

common tangent to the teeth at the point of contact, and a

common movement along a line perpendicular to that com-
mon tangent. If we consider ortfy this common velocity,

it becomes plain that we have here a case similar in some

respects to that of a pair of spur-wheels. In spur-gearing
the teeth have a common velocity along a line which is per-

pendicular to the line of centres and to the line of the teeth,

and the relative motion is simply a rolling together, the

virtual axis being a line parallel to the wheel axes and pass-

ing through the pitch-point. In a pair of screw-wheels the

relative motion is also one of rolling ;
the virtual axis being

the common tangent (XOY, Fig. 195), but this motion is

combined with a relative sliding along the common tan-

gent. This line may therefore be considered as the twist

axis* of the two wheels, and it may be shown that the twist

axodes of a pair of screw-wheels form a pair of hyperboloids ;f

the two surfaces rolling together and at the same time slid-

ing along their line of contact. If the axes of the screw-

wheels are parallel, the hyperboloids become cylinders and

there is no sliding motion along the line of contact.

The above principles must be considered in determining

the proper profiles for the teeth in screw-wheels. We must

in fact imagine that the pair of pitch surfaces are cut by a

plane passing through the point of contact and perpen-

dicular to the common tangent. We must then take such

shapes for the teeth as would work together correctly if

formed on a pair of pitch-circles having the same radii of

curvature as the sections in which the actual pitch surfaces

are cut by our imaginary plane have at their point of con-

tact.

Evidently the traces of the cylindrical pitch surfaces

of the screw-wheels on the imaginary plane will be a pair

* See 91. f See 95.
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of ellipses, always touching at the ends of their minor axes.

The plane will make with the median plane of each wheel

an angle (90 ), where a is the pitch-angle of the helical

teeth or screw-threads, and the semi-minor axis of the ellipse

will be r\ the semi-major axis being
~

-, where r is the

radius of the pitch surface of the wheel. In Fig. 200 is

shown the pitch surface of a screw-wheel (radius r) having
traced upon its surface a helix of pitch-angle XOC. As in

Fig. 195, the line XOY is a tangent to the helix at the point

O, and if were the point of contact of the wheel with an-

other, XOY would represent the common tangent or line

of contact of the teeth.

FIG. 200.

A plane passing through and perpendicular to XOY
will cut the cylinder in the ellipse LMNO, of which the major

2T
and minor axes will evidently be -r - and zr respectively.

In order to find the proper form of tooth profile (taken of
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course in the plane of LMNO and at right angles to the

centre line of the tooth), we must take as an imaginary

pitch -circle the circle of curvature of the ellipse at the point

O. The radius of curvature of the ellipse at this point is

r

easily shown to be .

,--^
hencejn a pair of screw-wheels the

teeth profiles should be designed as if they belonged to a

pair of ordinary spur-wheels of radii

J-?- and
Sin- at

i
Sin" a^

where a
l
and a

2
are the pitch-angles of the teeth of the screw-

wheels a and b.

Screw-wheels are often used to connect shafts which are

parallel. In this case the pitch-angles of the wheels are of

course equal, and if the wheels are properly designed there

is no difficulty in having two or more pairs of teeth in contact

at once. In order to avoid the prejudicial effect of the end

thrust developed when a pair of such wheels are doing heavy
work, it is usual to make each wheel of two parts, similar

in pitch, but one half right-handed and the other half left-

handed. Fig. 201 shows such a double helical pinion of the

form employed in a rolling-mill. The teeth profiles in such

wheels, taken on a section by a plane perpendicular to the

axes, will be the same as those required for spur-wheels of

the same diameter and circumferential pitch of teeth; for

in these wheels there is no sliding motion along the teeth.

If properly shaped, the teeth will be in contact along short

lines inclined more or less towards the pitch surfaces, accord-

ing to the pitch-angle chosen for the helices. When this

pitch-angle is 90 the wheels become spur-wheels, in which

the lines of contact of the teeth are of course parallel to the

pitch surfaces.

When worm-gearing is constructed with cylindrical

pitch surfaces, and teeth of uniform cross-section, contact,

as in the case of other screw-wheels, occurs at a point only,

and the forms of teeth may be found by the method just
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described. It is not difficult, however, by modifying the

form of the wheel, to obtain worm-gearing having linear

contact. The method of doing this is fully explained in

works on Machine Design.*
The section of the worm and wheel by a plane perpen-

dicular to the axis of the wheel, and passing through the axis

of the worm, is that of a rack in gear with a spur-wheel, and
the form of the worm-thread and wheel-teeth in this plane

may be drawn by the methods already discussed in

66 and 67. The trace of such a plane is shown in Fig. 202

Ai 1C

is OP

WORM WHEEL

FIG. 201. FIG. 202.

by the line AB
;
the figure represents the section of the worm

and wheel by a plane containing the axis of the wheel and

perpendicular to the axis of the worm. The form of a sec-

tion of the worm by a plane parallel to the axis of the worm,
and perpendicular to the axis of the wheel, is next to be

determined; the trace of such a plane on the plane of the

* Unwin,
" Machine Design," Vol. I, 234.
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figure is the line CD, and its intersection with the worm-
thread will take the shape of a rack having curved and un-

symmetrical teeth. The form of worm-wheel tooth required
to gear correctly with such teeth must then be found by the

proper method of construction, and the shape determined is

to be used for the section, of the^worm-wheel tooth cut by
the plane CD. A number of such sections, found for planes
at different distances from the median plane AB, will enable

a practically correct wheel-pattern to be mad. As a rule

such wheels are machine-cut by being rotated in correct

relation to a steel cutter or hob which is a duplicate of the

worm to be used.

The Hindley worm * has a screw-thread of varying section

traced on a non-cylindrical pitch surface whose outline is

an arc of the pitch-circle of the wheel. This form of tooth,

FIG. 203.

if correctly cut by means of a hob, has line contact: the

teeth touching the threads at all points in the median plane.

95. Hyperboloidal Wheels. It is possible to construct

wheels which will transmit motion between inclined non-

intersecting axes, and which are so formed that their teeth

are straight and have line contact. The pitch surfaces of

* American Machinist, March 25, 1897.
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such wheels are hyperboloids of revolution, as has already
been stated. In Fig. 204 let AB and CD be the axes of a

pair of such wheels; the line of contact of their teeth is to

be the line XOY, passing through a point on LOM the

common perpendicular to AB and CD. In general XOY
will be parallel neither to AB nor to CD.

If now we imagine the line XOY to be rotated around
AB as an axis, while its position in relation to AB remains

unaltered, XY will describe in space the hyperboloid a;

and similarly, if wTe suppose the rotation to take place about

CD, the hyperboloid b will be described. The two hyper-
boloids will of course touch along the line XY, which is in

fact their twist axis when relative motion occurs. The
smallest circular sections of the hyperboloids are known as

the gorge-circles. We proceed to determine the relative

angular velocity of a pair of such hyperboloidal surfaces,

supposing that they roll together. It is to be particularly
noted that hyperboloidal wheels differ from the cylindrical

screw-wheels hitherto discussed, in that the pitch surfaces

of the latter can touch only at a point, while those of the

former are in contact along a line. The relative motions

of the two kinds of wheels are, however, of the same kind,

namely, a rolling together, combined with relative sliding

along the line of the teeth. Let 6V 2
be the angles (in plan)

made by the projection of the line of contact XY with the

projection of the axis of a and the projection of the axis of

b respectively. The angular velocity-ratio of the wheels a

and b must evidently be the same as that for a pair of screw-

wheels of the same size as the gorge-circles of the hyper-
boloids and having the same obliquity of teeth. The

velocity diagram will therefore be that drawn in thick lines,

by the method of 93, and we shall have

u
b

r
a
'v

b
cos0

t

'

r
a
v

c

Now consider any point Y on the line of contact XOY.
The normal to the curved surface of the hyperbolcid at any
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point must pass through the axis; hence a straight line

drawn through Y and normal to the curved surfaces which

FIG. 204.

touch there must intersect both CD and AB. Such a com
mon normal is shown in the figure, where RYS is its pro-
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jection on a plane parallel to both axes AB and CD, and

R'Y'M is its projection on a plane perpendicular to the axis

of 6. In this view of course the points D, M, C y
and 5

coincide.

By a well-known principle of projection the real lengths

of the segments of the common normal are proportional to

their projections RY, YS, and R'Y', Y'M. Hence

r
b OM

~
Y'M

~
YS

A ?L = YJ

Again, since the common normal is perpendicular to

XOY, the line of contact, its projection RYS will be per-

pendicular to the projection of XOY on a parallel plane;

so that in the lower figure OYS and OYR are right angles.

Thus, finally,

This shows that the angular velocities of a pair of hyper-
boloidal wheels are to each other in the inverse ratio of the

lengths of the projections of the perpendiculars drawn from

any point on the line of contact to the axes; these projec-

tions being upon a plane parallel to both axes and to the line

of contact.

It should be noted, that in designing hyperboloidal wheels,

if the angle between the axes (in plan) and the.velocity ratio

are given, the position of the line of 'contact (in plan) is de-

termined. Thus in drawing such a pair of wheels we proceed
as follows :

( i ) Draw the axes in elevation and in plan.

(2) The velocity ratio being given, draw the line of con-

tact XOY (in plan), determining the point Y by marking
off DY and BY having lengths in the proper ratio.

(3) Draw SYR perpendicular to XOY
t
and also draw

MY'R', the projection of SYR on a plane perpendicular to

the axis of b.
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(4) Through Y' draw X'O'Y'
;
this determines the values

of ra and r
b
and settles the sizes of the gorge-circles.

(5) Proceed to complete the projections of the hyper-

boloids, as shown.

As in the case of . screw-wheels, the velocity diagram
shows the rate at which the teeflh of a and b slide along each

other. This relative sliding velocity is shown as vs in Fig.

204.

It is not necessary in practice to use more than a com-

paratively small portion of the hyperboloid for a working
wheel. Fig. 205 shows a pair of hyperboloidal rollers, and

a pair of skew-bevel wheels having
the same velocity ratio. It will be

seen that these bevel wheels corre-

spond in fact to the end portions of

the hyperboloids. The forms of the

teeth of hyperboloidal wheels may
be conceived as being marked out

upon the cones whose surfaces are

normal to those of the hyperboloids

at the point of contact considered.

Methods of doing this have been

discussed by Willis,* Rankine,f and

others. Here it will be sufficient to

note that the teeth of such wheels

will not be of uniform section

FIG. 20$. throughout their length. In the

comparatively narrow hyperboloidal wheels generally used

there is but little variation in the form of the tooth in

passing from one end of the wheel to the other. An ap-

proximately correct form of tooth may be determined for

such wheels in the same way as for screw-wheels.

In Fig. 204 for example, we may imagine the two hyper-

boloids cut by a plane parallel to RYS and perpendicular

*
Principles of Mechanism, p. 151. f Machinery and Milhvork, p. 146.
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to XOY . When the resulting sections are drawn out their

circles of curvature may be approximately found, and the

tooth-forms designed in the ordinary manner, remembering
that the circumferential pitch, and therefore also the normal

pitch, increases as we pass from the gorge to the ends of the

wheels. It will be seen that this method is practically the

same as that adopted in the case of ordinary bevel-wheels

(see 98), and is equivalent to drawing out the teeth on

the development of the cones previously mentioned.

The subject of hyperboloidal wheels is treated at con-

siderable length in MacCord's
'

'Mechanical Movements," to

which work the reader is referred for further information.
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SPHERIC MOTION.
,

96. Spheric Motion in General. Spheric motion has

already been denned in 6, and it has been explained

that in such motion any given point in the moving body
remains on the surface of a sphere described about a certain

fixed point as centre. Two bodies having relative spheric

motion will therefore have this point as a common centre.

We can study the relative motion of two or more such

bodies by imagining that they are cut by a sphere described

about the common point as centre, and we can then con-

sider the movement of these spheric sections exactly as we

considered the motion of the plane sections or projections

of bodies having plane motion. Plane motion may indeed

be looked upon as a particular case of spheric motion where

the radius of the sphere is infinitely great.

We may therefore suppose that propositions proved with

regard to plane motion will hold good, with certain necessary

modifications, with regard to spheric motion also. It will be

convenient, first of all, to consider the motion of a spheric

figure on the sphere of motion, just as we considered in

5 the motion of a plane figure in the plane of motion. The

position of the spheric figure will of course be defined if we
know the position of two of its points.

In Fig. 206 (a) a figure on the surface of a sphereLMN
has the positions of two of its points (A and B) defined.

Let the figure, which represents a body having spheric

motion, be moved from a position AB to a new position,

A
1
B

l \
the movement being executed in a very small period

304
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of time, and being therefore an exceedingly small displace-

ment. The paths of the points A and B will then practically

coincide with portions of great circles passing through A
and A v and B and B

lt respectively. Now let arcs of great

circles be drawn passing through L and M, the middle points

of AA
{
and BB^\ let the planes of these great circles be

respectively perpendicular to those of the great circles ALA^
and BMBV and let them intersect at N. Draw ON passing

FIG. 206.

through 0, the centre of the sphere. It is then evident that

the actual small displacement of the body AB is the same

as if it had undergone a rotation about the axis ON, for N
is the point on the surface of the sphere at which AA

l
and

BB
l
subtend equal spherical angles. This follows from the
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fact that the spherical triangles ANB and A
l
NB

l
are equal

in all respects.

It may happen that L and M both lie on the same great

circle, as in Fig. 206(6), in which case our construction fails.

The point Ar
is now to be taken at the intersection of the

great circles AB and A]BV and" it is evident, as before, that

the angle subtended at TV by the arcs AA
i
and BB

1
is the

same, and that ON is the axis of rotation. Any actual

motion of AB on the surface of the sphere may be considered

as being made up of a series of infinitely small displacements,
to each of which there corresponds one position of the axis

ON. ON is therefore the victual axis of the motion of AB
with regard to the sphere. The reader should compare the

foregoing argument with that in 5 applying to plane motion.

We may call the surface described by ON in the sphere
the axode of AB with respect to the sphere. Two bodies, a

and 6, having relative spheric motion will of course have a

pair of such axodes
;
the axode of a being imagined as being

described in the body b and vice versa, just as in the case

of plane motion: and, further, this relative motion may
be represented by the rolling together of such axodes.

Perhaps an example may make this clearer. Fig. 207

represents the pitch surfaces of a pair of bevel-wheels
;
their

axes intersecting at 0. These wheels are intended to trans-

mit- angular motion uniformly between shafts whose axes

intersect, and their motion will evidently be exactly the

same as that of a pair of circular cones of corresponding

shape rolling together without slipping, and having a com-

mon apex at 0. A pair of such cones, a and b, and their

frame, c, will have relative spheric motion about the point

0. The lines OA
ar
and OA

bi
are of course the axes of a

and b with respect to the frame c\ the line OA cb along which

the cones are in contact is the virtual axis of a with respect

to b, and the surface of each cone is therefore the axode of

the other. (Compare the relation between the pitch sur-

faces in spur-gearing.)
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It is evident that in Fig. 207 the three virtual axes of

the three moving bodies a, 6, and c are in one plane; we

proceed to show that this is true of any three bodies having
relative spheric motion. The figure already used to illus-

FIG. 207.

trate the corresponding proposition for plane motion is

repeated here.

Let the bodies be a, 6, and c
;
there must be some point

in space, 0, which is common to the three bodies, and

through which, therefore, their three virtual axes must

always pass. Let the paper (in Fig. 208) represent the pro-
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jection of part of a spherical surface, and let O ab ,
O uc ,

and

O
bc represent the traces on this surface of the virtual axes

OA ab ,
OA ac ,

and OA
bc , respectively. Then, following the

reasoning of 5, we may say that the line OA ac belongs,

for the instant considered, to both a and c. As a line

FIG. 208.

in a it is turning relatively to b about the line OA ab ,
and is

therefore moving in a direction perpendicular to the plane

containing OA ac and OA ab . As a line in c it must similarly

be moving in a plane perpendicular to the plane contain-

ing OA ac and OA bc . The line OA ac is therefore moving in a

plane normal to each of two planes which contain it, and

these two planes must coincide. The three lines OA Qb .

OA ac ,
and OA

bc
thus lie in one plane.

97. Spheric Mechanisms having Lower Pairing. The

Conic Quadric Crank-chain. It is not difficult to devise

mechanisms corresponding to the plane mechanisms of

Chapter III and IV, but having spheric motion of the va-

rious links. To do this it is only necessary to arrange that

the axes of all turning pairs meet in a point instead of being

parallel, and that the lines of motion of sliding pairs follow

great circles on the surface of the sphere of motion.

The axodes of the links of such mechanisms will, as we
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have seen, be conical surfaces (not necessarily circular

cones), and the mechanisms are therefore called by Reu-

leaux conic chains. A model representing a conic quadric
crank-chain is shown in Fig. 209, and it may be remarked

that, as in the case of plane mechanisms, the actual form of

the links is unimportant from a kinematic point of view so

long as the axes of the elements are in the correct position

and the links do not foul one another during motion. The

reader should compare the chain of Fig. 209 with that of

Fig, 40.

In studying conic mechanisms we may note that, instead

of considering the actual lengths of the various links, we have

FIG. 209.

now to deal with the angles subtended by those links at the

centre of the sphere. The relation between a plane mech-

anism and the corresponding spheric chain is in this respect

like the relation between a plane triangle and a spherical

one. In order to connect the elements of two turning pairs

making an angle a with one another, we can thus use either

a link subtending the angle a or one subtending 180- a.
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Such a substitution may of course totally alter the appear-
ance of the mechanism, but will produce no kinematic

change.
The reader will recall the way in which we imagined the

plane or cylindric quadric crank- chain of Fig. 60 to have

one of its pairs transformed from^a turning to a sliding pair.

This change involved the expansion of the elements of the

turning pair cd until the radius of their working surfaces

became infinitely great. In Fig. 210 is illustrated the cor-

responding alteration by which a conic quadric crank-chain

becomes a conic slider-crank chain. The chain of Fig. 210 (b)

is a conic lever-crank chain, in wrhich the angle of the links

a and b is in each case 90. It will be .evident that by in-

creasing the radius of the turning pair ab until it is equal
to the radius of the sphere we get the chain of Fig. 210 (c),

having exactly the same relative motions as before, but

having as the link b a block sliding in a groove formed in a

and following a great circle on the sphere. We may term

this mechanism a spheric or conic slider-crank. The right-

angle links in the conic chain correspond to the infinite links

in the plane mechanism. The sketch Fig. 210 (a) represents

a conic quadric crank-chain in which 6 = 45. If a some-

what similar transformation were carried out in this case

we should obtain a crossed conic slider-crank chain, the

groove on the surface of the sphere following the trace of

the axis OA hr ,
which in this case is not a great circle and

no longer passes through A ad .

As an exercise the reader should endeavor to devise for

himself spheric mechanisms corresponding to other simple

plane mechanisms. Comparatively few conic crank-trains

have found application in practice,* and in general their

industrial importance is not very great. We shall proceed
to follow somewhat more closely the action of the conic

quadric crank-chain, which is utilized in the form of the

* For a discussion of one of these, the Tower Spherical Engine, a conic

chamber quadric crank-chain, see Kennedy, Mechanics of Machinery. 65.
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well-known Hooke's or Universal Joint, for connecting
shafts whose axes are not parallel and meet in a point.

One arrangement of this mechanism is shown in Fig.

2iia, together with a diagram, Fig. 2 Tib, showing the vari-

ous links drawn on the surface of a sphere, after the fashion

A ad

k ad a

bd

FIG. 2116.

of Fig. 210 (a). The plane of the paper is supposed to be that

of the axes OA ab and OA ac ,
b and d being the links corre-

sponding to the two shafts, while a is the fixed link, and c
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connects b and d. We wish to find, for any given position

of the mechanism, the angular velocity ratio of b and d.

The links b, c, and d each subtend an angle of 90 at the

centre of the sphere, while a subtends an angle equal to

1 80 (angle between axes of shafts).

It may be noted that while b and d will obviously per-

form successive quarter-revolutions in equal times, their

angular velocities are not necessarily equal in any given

position. The angular velocities will in fact be equal at only
four points in each revolution.

Utilizing the proposition of 96, we can easily find the

virtual axes of'the mechanism of Figs. 2 1 ia and 2116. Thus

OA bd must lie in the plane containing OA ab and OA ad ; it must
also lie in that containing OA

cd
and OA

b ,. Similarly the

point A
a ^ is found at the intersection of the great circles

passing through A cd
A

ud
and A abA bc

. In the case of spheric

motion it is important to remember that the virtual axis of

two moving bodies is a line which is common for the instant

to the two bodies, and which has the same angular velocity

whether it is regarded as belonging to one or to the other

This statement corresponds in the case of plane motion to

the definition of a virtual centre as that point in the pro-

jection of the two bodies on the plane of motion which is

for the instant common to both projections, and has the

same linear motion whether it is considered as a point in one

body or as a point in the other.

Having found the virtual axes of the mechanism, the

relative angular velocities of the links can be determined

graphically. In Fig. 2116, for example, suppose that V
is the linear velocity of the point P(A bd ) in a direction tan-

gential to the great circle A
bcA.d and normal to the plane

of the paper. The angular velocity of P (considered as a

point in b) about the axis OA at is of course p^, and this

must be equal to the angular velocity of the link b with

respect to the fixed link a. Similarly, since P is also a point
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v
in d, the angular velocity of d must be -, where PM and

PN are the perpendiculars dropped from P on to OA ab and

OA ad respectively. Thus it follows that

It will be seen that the determination of the angular

velocity ratio in this way involves the finding of the axis

OA bd ,
which can only be done by drawing the plane pro-

jection of the whole mechanism in each position for which

the velocity ratio is required. Since each such projection

generally involves drawing three ellipses, the process is not

very convenient, except in the cases where the plane of the

link b makes an angle of 90 with, or coincides in position

with, the plane of the link a. The latter plane of course

is the plane which contains OA
2fc
and OA ua .

The positions mentioned are shown in Fig. 212. Let d

be the angle between the axes of b and d, let a be the angle

made by the plane of b with a plane normal to the plane of

the paper and containing OA af .

J
and let /? be the angle be-

tween the plane of d and that of the paper. As before, the

plane of the paper contains OA ah and OA ad . It is then

evident from the figure that when <* = o, ft
=

o, and

wda PM cos d'

Similarly when a = - and # = -, we have

u PN

The value of the angular velocity ratio may also be

found in another way. Fig. 213 shows three views of the

mechanism, namely, a projection on the plane containing

OA ab and OA ad ,
a projection on a plane perpendicular to

OA ad , and one on a plane perpendicular to OA ab . In the
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FIG. 212.

PROJECTION ON PLANE

HORMAL TO AXIS OF

1 PROJECTION ON PLANE CONTAINING

AXS. OF b AND

PROJECTION ON PLANE

NORMAL TOf AXIS OF 6

FIG. 213.
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latter view the ellipse A'D'C* represents the projection of

the path of the point 5 (the join of the links c and d), while

the circle A'B'C' represents the projection of the path of R,

the join of c and b. If now we draw the angle A'OR' = ',

so that OR' is the projection of the link b, the correspond-

ing projection of the line-OS will be OS'. The real angle

ROS is of course a right angle, being equal to the angle

subtended by the link c
;
and since the line OR' lies in the

plane of the paper, the projection OS' must, by a well-

known principle of projection, be at right angles to OR'.

Hence it follows that the angle B'OS' = a =AOR f
. Similarly

it may be shown that in the other view D"OS" =p=A"OR".
It is plain from the figure that S'V =--S"V" = perpendicular

distance of 5 from plane of axes. Also 0V = OS cos 6. Thus

S"V" S'V S'V'

= tan a cos 0.

From this expression, being constant, we get a relation

between a and
ft. By differentiation with regard to time

da

Therefore since - =w and - =
ba da ,

w

^

a>da sec
2a cos d

'

But tan /?
= tan a cos 6. Hence

-a = -
^- + sin

2^ cos
wda cos 6

i sin
2^ sin 2

COS0

Similarly it may be shown that

0), COS dba

wda i cos 2

/?
sin

2 6'
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The velocity ratio plainly has its maximum value/ --^
\cos

when a=(3 = o, n, 2n, etc., and its minimum value (cos 0)

when a =/? = -, , ,
etc. ;

results which agree with those222
previously obtained.

In order to find the positions in which the shafts have

the same angular velocity we have only to put = i and

or

i sin
2

tf = cos 6(1 sin 2 a cos 0)

i cos 6
.

i cos 2

For example, if = 30 and cos = 0.86602, we have

. , 0.13398sm -
<* =- -=0.53500,

0.25001
sin a= 0.73205.

The two shafts will then be moving with the same angular

velocity when = 47 4', 132 36', 227 4', or 312 36'; that

is to say, four times in each revolution.

It is evident from the relations thus obtained that if

we connect two shafts by means of an intermediate piece

and two similar universal joints, as is done, for example, in

the feed gear of certain milling machines, then if the shafts

are parallel so that 6
l
=

2 ,
we have a^ =/?2 ,

and the shafts

will have uniform velocity ratio
;
the inequality of motion

caused by the first universal joint being exactly compen-
sated by the second.

The method of studying the action of the conic quadric
crank-chain may serve as an example of the way in which

other conic mechanisms having lower pairing may be treated.

98. Spheric Mechanisms having Higher Pairing. Bevel-

gear. Each of the spheric mechanisms discussed in the

preceding section is the representative of a plane mechanism,
the essential difference being that in a spheric mechanism
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the axes meet in a point instead of being parallel, and the

relative motion of the links is spheric instead of plane.

If we consider in a similar manner the change which

would take place if the axes in spur gearing were made to

intersect instead of being parallel, it is plain that the cylin-

drical pitch surfaces would become cones, whose apices

would lie at the point of intersection of the axes. The
toothed wheels, whose relative motion corresponds to the

rolling together of such conical pitch surfaces, are known
as bevel-wheels, and such relative motion is, of course,

spheric motion, as was shown in 96.

If we go a step further and imagine that the axes are

not parallel and do not intersect, then the pitch surfaces

become hyperboloids and the relative motion is screw

motion, a state of things which has already been considered

in Chapter XI.

M

FIG. 214.

Two right circular cones, a and b, whose axes are AQ
and BQ, are in contact as represented in Fig. 214. If these

cones are so rotated that there is no relative slipping at one

point of contact, L, and if the point Q is the common apex
of both cones, then at every other point of contact there will
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also be rolling, without any sliding motion. Let the plane
of the paper contain the axes QA and QB and the line of

contact OL; then, if there is no slipping at L, and if aj
ac

and a>
bc

are the angular velocities of a and 6, relatively to c,

the fixed link (not shown in the figure), we shall have

<* V, LN

where V
'

c
is the common linear velocity of the two cones

at L, measured, of course, in a direction normal to the

plane of the paper. Hence

ftL LN

Further, if there is to be no slipping at another point of con-

tact, /, we must have

=
aj

bc Im
'

a relation which shows that when r~ == 'm- the circular
Im LM

sections at In and Im will roll together if the sections at LN
and LM do so. We may note that

w
bc sin^QL*

It is easy therefore to lay out the pitch surfaces for a pair

of bevel-wheels having any desired velocity ratio. We have

only to arrange two cones having a common apex, and hav-

ing a line of contact such that the lengths of the perpen-
diculars dropped from any point on it to the axes are in-

versely as the angular velocities. The cones need not

necessarily have external contact. Bevel-wheels having
internal contact can be made

;
an internal bevel-wheel cor-

responds to an annular spur-wheel.
In practice frustra of the pitch-cones are used for the
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pitch surfaces of bevel-wheels, and slipping is prevented by
forming teeth on these pitch surfaces, exactly as in the case

of spur-wheels, with the important difference that in the

case of bevel-wheels the teeth are not of uniform section,

but taper in such a fashion that they would vanish at the

apex of the pitch-cone if thev were continued to that point
*

In Fig. 214 the virtual axes are, of course, O.A, QL, and QB,

QL being the virtual axis of a with regard to b. The third

(fixed) link of the train is not shown.

In Chapter VII, when studying the formation of the

tooth profiles for spur gearing, we considered these as being

plane curves, described upon a plane normal to the axes

of the wheels and (in the case of cycloidal teeth) generated

by the rolling together of the describing circles and the

pitch-circles. It would perhaps have been more correct

if we had considered the tooth surfaces as being generated

by the rolling together of pitch surfaces and describing

cylinders. In the case of bevel gearing the corresponding

problem is more difficult, because it is necessary to picture

in the mind the working faces of the teeth as being described

by the rolling together of conical, instead of cylindrical,

surfaces. Drawings connected with bevel-gear in general

will require at least two projections, as we found when con-

sidering hyperboloidal gearing.

It is possible to assume the form of the working surface

of the tooth of one bevel-wheel, and then to devise the form

of the corresponding tooth of another wheel gearing with

the first with uniform velocity ratio. The necessary and

sufficient condition for such uniformity will be that in any

spheric section of the pair of teeth, drawn with the inter-

section of the axes as centre, a great circle drawn to cut the

tooth profiles at right angles at their point of contact will

pass through the virtual axis of the pair of wheels. (Com-

pare the corresponding condition for plane motion.) It is

proper to employ spherical curves as forms for the teeth of

bevel-wheels, these curves being drawn in similar fashion

* See Fisj. 207.
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to the plane involute or cycloidal curves used in the case of

plane motion, and we shall now discuss the way in which we

may imagine involute bevel-wheel teeth profiles to be gen-

erated. In Fig. 215 the curves MSC, NTD represent the

FIG. 215.

traces, on a spherical surface whose centre is 0, of two right

circular cones, having axes OP and OQ. The great circle

APRQB lies in the plane containing OP and OQ. A plane

touching the two cones intersects the spherical surface in

MRN, which is, of course, an arc of a great circle. If now
we suppose that the plane surface OMN takes the form

of a flexible sheet, it will be seen that a rotation of the two

cones in the sense of the arrows would cause the sheet to

wrap itself around the cone OSM and unwrap from the cone

OTN, a point L on the edge of the sheet thus describing on

the surface of the sphere the great circle NLM. With

reference to the small circle SM
,
the point L will describe

on the surface of the sphere the curve SL, which may be

termed a spherical involute; and in the same way with

regard to TN, the involute TL will be drawn, the two in-
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volutes, of course, always touching at L. The line OL will

thus describe on the cone OSM the ruled surface OSL, and

the somewhat similar surface OTL will be generated by the

relative motion of OL and the cone OTN. These surfaces

will roll and slide together, always being in contact along
such a line as OL, if the 'cones rf6tate with uniform velocity

ratio
;
and they can therefore be used as the working faces

of the teeth of a pair of bevel-wheels whose axes are OP and

OQ. The pitch surfaces of these wheels will be the cones

OAR, OBR, which are indicated by dotted lines in the

figure and touch along the line OR. A plane drawn through
OL perpendicular to the plane OMN would be the common

tangent plane to the tooth surfaces through their line of

contact. The reader should compare this discussion with

that of 66, noting the modifications rendered necessary

in adapting the reasoning to the case of spheric motion.

He should also endeavor to work out for himself the method

of forming cycloidal teeth for bevel-wheels by a method cor-

responding to that used in 67 for spur-wheels, remembering
that the figure must be supposed to be drawn upon the

surface of a sphere instead of upon a plane surface.

In practice it is not convenient to use spherical sur-

faces for drawing; in setting out the teeth of bevel-wheels

it is therefore necessary to adopt a somewhat different

method (due to Tredgold) which gives results closely ap-

proximating to the truth.

In Fig. 216, OAR, OBR represent the pitch surfaces of

a pair of bevel-wheels, projected on a plane containing the

axes OP, OQ. The arc APRQB is the trace of a spherical

surface drawn with centre 0, on which surface the outlines

of the teeth should properly be described. For this surface

we substitute the developable surfaces of the two cones

XAR, YBR which touch the spherical surface along the

pitch-circles AR, BR of the bevel-wheels. It is evident

that these cones are in fact the same as the cones men-
tioned (in the case of hyperboloidal wheels) in 95,
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and their curved surfaces are normal to the pitch surfaces

of the wheels. The arcs RV and RW, drawn with X and

Y as centres respectively, are in fact the developments of

FIG. 216.

portions of the pitch-circles AR, BR, and it is on these lines

as pitch-circles that the tooth profiles are to be drawn.* No
considerable error is introduced by this construction so long

as the bevel-wheel has more than 24 teeth.

In recent years a number of machines have been de-

signed for the purpose of cutting bevel-wheel teeth t ;
one

of the most important and interesting from a kinematic point

of view is that devised by Hugo Bilgram t for cutting teeth

of the involute form. In this machine the correct form of

* See Unwin, Machine Design, Vol. I. 208.

f Trans. Am. Soc. M. E., Vol. XXII. p. 672.

J See Engineering, Vol. XL. p. 21
;
also Journal of the Franklin Inst., Aug.,

1886.
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tooth is generated by the relative motion of a V-shaped
cutter, representing the involute tooth of an imaginary

plane bevel-wheel or crown-wheel, and of the wheel blank.

The latter is rotated, during the formation of each face of

each tooth, about its proper virtual axis. The meaning
of the term plane bevel-wheel 'wilL be seen from Fig. 217.

FIG. 217.

In this figure the pitch surface of a is a cone whose vertical

angle is 2 (
-- a\ where a is the angle between the axes.

The pitch surface of b then has a vertical angle of 180 and

is a plane. From the figure we see that

With the same angle between the axes we might also have

a wheel b' of vertical angle 2 ( <* - a i

j
gearing with a.

In this case we should have a velocity ratio



SPHERIC MOTION. 325

' I" \in I of)
\2 /

COS

If in Fig. 217 we suppose the pitch surface of the plane
wheel b to be fixed, and the wheel a to be rolled upon it,

it is plain that a cutting-tool reciprocating along a diameter

of the pitch surface of b will in successive cuts, if properly

adjusted, form a tooth space in the wheel blank corre-

sponding to a. Ijt is on this principle that the action of the

Bilgram machine depends.
In another class of bevel-gear-cutting machines we may

place those using a master gear or template. The mode of

operation of the Rice gear-cutting machine, which is of this

type, is illustrated in a diagrammatic fashion in Fig. 218;

the details of the actual machine being somewhat differ-

ently arranged. The blank A, from which the bevel-wheel

is to be cut, has the tooth spaces roughly gashed out, and is

mounted on a shaft to which is secured a template or mas-

ter wheel B, having teeth of the correct profile formed upon
it. There may be only one of these profiles, as in the sketch,

or B may take the form of a complete wheel. The shaft

carrying A and B can rotate about an axis OX, with reference

to the frame D, which in its turn can be rotated about a

vertical axis OY. The actual motion of the blank may
therefore be any rotation compounded of movements about

the axes OX and OY. The fixed base of the machine, E,
carries an arm Ev in connection with which a rotating
cutter C and a guide-plate F are so arranged that the face

of the cutter and the face of the guide-plate lie in a plane

containing the axis OY. The cutter having slightly entered

the gash cut for the tooth space, the frame D is rotated

about OY, and if the tooth form is kept in contact with the
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plane face of F
t
it is evident that the relative motion of F

and B will be copied on a reduced scale by C and A
,
and the

cutter will therefore form one side of one tooth of the blank

wheel. With reference to the fixed link E, the blank and

template are at any instant really rotating about some such

axis as OR. In order to cut the opposite side of the tooth,

the stop F must be moved parallel to itself by an amount

FIG. 218.

equal to its own thickness, and when brought in contact

with the opposite face of the template a repetition of the

same movement will cause the desired form to be produced
on the other side of the tooth of the blank. One correctly

formed template is thus made to serve for cutting a num-
ber of bevel wheels.

It is possible to construct bevel-wheels with spirally

formed teeth, as in Fig. 219. These wheels differ from the
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skew-bevel wheels of Fig. 205 in that the axes of the wheels

intersect, so that the pitch surfaces are of course cones, and

not hyperboloids. The teeth are no longer straight, but

follow helical curves traced on the conical surfaces. Such

FIG. 219.

wheels correspond in fact to screw-wheels, and have recently

met with considerable favor on the continent of Europe,
several French and German gear-cutting machines being

specially designed for producing them. The teeth of spiral

bevel-wheels usually follow a conical helix of constant pitch,

the projection on the base of the cone being an Archimedean

spiral.

The velocity ratios of bevel-gear mechanisms can be

determined by aid of the principles discussed in 68

and 69, and these gears may be arranged so as to corre-

spond with the various compound or epicyclic trains de-

scribed in a previous chapter; they may include annular

wheels, and the general methods of determining their veloc-

ity ratios are the same as those employed in the cases
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previously discussed. We shall take a few examples which
will make this clear.

In Fig. 220 is represented a well-known gear* which

finds wide application. It consists of four bevel-wheels

a, b, c, d, the frame or fixed link being e
;
of these wheels a

and b are of the same-size, anoV;c and d are also equal. The
axes of the wheels intersect at fight angles as shown.

FIG. 220.

If we imagine the frame e to be the fixed link, it is ob-

vious that the following relations will hold:

We have also

and

Hence

Similarly,

<*>be

PN
PM

and a)ea i

and ufr
=

* The so-called ''Differential" Bevel-gear.
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We thus see that if a be the fixed link, e will revolve

around the axis MO with one half the angular velocity of

d, and in the same sense.

A compound reverted bevel-gear train is shown in Fig.

221; in this particular case the axes do not intersect at

right angles. In order to find the angular velocity ratio

of a and c we have

thus

CO PN= Fnni- and 'bd

'bd 'cd QR'

CO
cd

PN.QS
PM.QR
TR.QS
TV .

FIG. 221.

If now we denote the angles TOS, QOS, and ROS by a,

and respectively, it is evident that

coad sin (6 a) sin /?

co . sin (6 /?) sin a
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Let n be the numerical value of this expression. If now
we imagine that c makes one revolution, d being fixed, a

will make n revolutions in the same sense. Let the whole

mechanism receive one revolution in the negative sense

about the axis 05, so that c is brought to rest, and d makes
one revolution in the "h'egative* sense. While d makes one

revolution the link a will now be making n i revolutions

in the sense opposite to that of the rotation of d. We then

find that

CO cot a cot /9

co
dc cot/? cot 6'

It should be noted that if the axes are at right angles,

CO

and

n

CO

ad TR cota
CO

cd

J
dc

sin
(ft a)

sin a cos
/?'

Fig. 222 shows the way in which the bevel-gear train of

FIG. 222.

Fig. 220 is employed as a two-speed gear for transmitting

power from the engine of an automobile to the driving-

wheels. The engine-shaft a is rigidly connected to a bevel-
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wheel ar A second bevel-wheel, b, similar to a l runs freely

on the shaft, but can be held at pleasure by the application

of a band-brake e to its brake-drum br The wheel b
2 is

rigidly connected to b and can be driven by the engine

fly-wheel a
2 by means of a friction- clutch c, the details of

which are not shown.

A pair of smaller bevel-wheels dv d
2
are carried by a

frame /, which runs freely on the engine-shaft, and has upon
it the sprocket-wheel /j, which gears with the pitch-chain
that transmits the motion to the driving-wheels (see Fig.

167). The fixed piece or frame of the mechanism is g.

The gear can be worked under the following four condi-

tions :

(1) Engine running freely. The clutch c is discon-

nected, / remains stationary, the brake e is not applied,

and b rotates with angular velocity equal to that of the

engine-shaft, but in the reverse sense.

(2) Engine drives sprocket-wheel at low speed. In this

case b
l

is held by the brake e, the clutch c is not in gear,

and / rotates in the same sense as av but with only half its

angular velocity.

(3) Engine drives sprocket-wheel at high speed. The
clutch c now connects a

2
and 6

2 ,
the brake e is not applied;

a, b, and / therefore all revolve together with the same speed,

and the bevel-wheels have no relative motion at all.

(4) Carriage is stopped by applying the brake e, the

clutch c being in gear, thus connecting b and a.

99. Roller Bearings Involving Spheric Motion. We have

seen that the various links in bevel-gear mechanisms

have relative spheric motion. Many roller and ball bear-

ings, which may be regarded kinematically as augmented

turning pairs, present examples of similar relative move-

ment, which will next be discussed. The arrangement
shown in Fig. 223 is often employed as a thrust bearing for

a shaft or pivot on which a longitudinal pressure is exerted.

The plates or flanges on which the pressure is taken are
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separated by a number of conical rollers, cages or frames

being usually provided so as to prevent the rollers from

getting out of position. In such a case, if we know ojab

(the angular velocity of the flange or collar a with regard

to the fixed link b), the angular velocity of the rollers can

be exhibited in a very simple manner. In Fig. 223, with

reference to the fixed link the roller c is turning about the

instantaneous axis OB, while OA is its instantaneous axis with

FIG. 223.

relation to a. OX is the axis about which a is turning

relatively to b. The real motion of <;, relatively to b,

may therefore be considered as being the resultant of the

motions of c relatively to a, and of a relatively to b.

From a pole P we draw the vector PQ, representing ojab ,

according to the convention of 16. The line PR is

then drawn parallel to BO, the instantaneous axis of c

with regard to b, and it meets a line QR drawn parallel to

AO. Plainly c revolves relatively to b in a sense shown by
the arrow-head on PR, and the arrow-head on RQ gives the

sense in which a turns with regard to c. PQR is then a

triangle of angular velocities in which

PR = <^

and PQ, the resultant of QR and RP, must represent the

resultant of aj
ac and aj

cb , namely, ajab .



SPHERIC MOTION. 333

The motion of the roller c with respect to the links with

which it pairs is evidently the same as that of a bevel-wheel,

and the whole really forms a spheric mechanism.

Next suppose that the rollers are cylindrical, as in Fig.

224, and, as before, let OA, OB be the virtual axes of a and

c and of c and b. The motion of the roller c relatively to

a or to b, may now be shown to consist of rolling about an

axis parallel to OC, combined with a spin about an axis

parallel to AB. If we draw the triangle of velocities, as

before, and proceed to resolve cocb into two components,
one (PS) parallel to the surfaces in contact, and the other

FIG. 224.

(SR) normal to those surfaces, we may evidently consider

the real motion of c relatively to b as being due to a roll-

ing PS combined with a spinning SR. The latter line then

represents the angular velocity with which c is being twisted

about a vertical axis in order to compel it to travel round

in a circular path. In the same way RT gives the spinning

velocity of a relatively to c. In Fig. 223 the form of the

rollers is such that w
cb has no component normal to the sur-

face of contact
;
hence in that case there is, as has already

been seen, no spinning, but a relative motion of rolling only.

In Fig. 224 the line 57 gives the total spinning at A and

at B\ this is evidently equal to PQ, the relative angular
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velocity of a and b about the axis OX. The condition for

rolling without spinning is that the instantaneous axis of

the two bodies shall lie in the tangent plane at the point

of contact (6); this is the case in Fig. 223, but not in

Fig. 224.

Roller-bearings are' often uspd for the journals of shafts ;

but the rollers are then parallel, instead of conical, and

their motion is not spheric but plane.

100 Ball-bearings. When balls are substituted for

rollers, the motion is in general spheric, and Fig. 225 shows

diagrammatically the arrangement of a number of typical

ball-bearings, as applied to shaft-journals (a, b, c) and to a

footstep- or thrust-bearing (d) . It will be seen that these

bearings may be classified into two-, three-, or four-point

bearings, according to the number of points of contact be-

tween each ball and its races. The form (a) is a two-point

bearing, and in practice it is necessary to give the working
surfaces of the races a slight curvature in the direction of

the axis of the shaft, as shown, in order to keep the balls

in position. At (b) is shown a four-point bearing, and at (c)

a two-point bearing, as used for the wheel or crank-axle

bearing of a bicycle; (d) is a three-point thrust-bearing.

Both the balls and their races are made of the hardest suit-

able material, so as to reduce as far as possible the surface

of contact. If the geometrical forms of the parts were

exact, and if the material were perfectly rigid, contact

would take place at points only, and any loss due to spinning

friction at such points of contact would be negligible.

Actually, however, this loss is quite appreciable, especially

where the balls are heavily loaded, and, other things being

equal, the best ball-bearing will be one in which this spinning

of the .balls about axes normal to their surfaces of contact

is reduced to a minimum. The loss from rolling friction

is not of such great importance. The method of deter-

mining the rolling and spinning velocities of the balls will

now be considered for various cases.
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In Fig. 226 is represented a chain consisting of a fixed

cone b, and a ball c rotating in contact with b and also in

\(d)

FIG. 225.

contact with the movable cone a. This movable cone
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rotates relatively to b about their common axis XY. It is

required to determine the motion of the ball c. The whole

arrangement may be supposed to form one portion of a two-

point ball-bearing, the cones a and b being the tangent
cones to the curved races in such a bearing as Fig. 225 (c).

In order to see more clearly the nature of the relative

movement of the ball and cones, suppose the ball to be

b FIXED

replaced by a very thin cylindrical roller of diameter d and
At

thickness At, so that AA
l
=BB

i
=

. Let ojab be the rela-

tive angular velocity of a and b
;
then the linear velocity of

the point A in a direction normal to the plane of the paper
will be o)ab xAM. The velocity of a point A^ (on the cone)

/ At \
will be a)ab X ( AM sin 9?

j,
while the velocity of the point

A! (on the roller) will be the same as that of the point A lt

namely, a)abXAM; that is, if we suppose the roller to be

moving about the instantaneous axis BY, or if we suppose
there is pure rolling at B. Hence A^ on the cone and A

v
on

the roller will have a relative linear velocity (normal to the

plane of the paper) equal to

At
'ab . .sin
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and their relative angular velocity about the axis AB will be

At .

. sin
3 2

At

2

which is in fact the rate at which the ball will spin on the

cone a if it rolls without spinning on the cone b. In other

words, the total relative spinning of the ball with regard to

the cones is aj ab sin <p.

In general we have no right to assume that BY is the

virtual axis of c and 6, and that AY is the virtual axis of

c and a. It is just as likely that these axes are BX and

AX, in which case there would be a spin ajab sin y at B and

pure rolling at A. We know that the centre of the ball

travels in a circular path whose plane is perpendicular to

XY, and that the three virtual axes lie in one plane. That

the ball has spheric motion will be seen if we imagine that

the whole bearing receives such a velocity that the centre of

the ball remains at rest, while b and a rotate about XY with

angular velocities of different senses. The points .4 and

B are now moving perpendicularly to the plane of the paper,

and the axis of rotation of the ball must therefore be some

line lying in the plane of the paper, and cutting XY in some

point 0. The position of will depend on the relative

amount of rolling and spinning at A and B, and it forms the

centre of the spheric motion for the whole bearing, so that

the virtual axes of c and b and of c and a must pass through
O. The line OC will of course be the axis of rotation of

the ball, supposing the whole bearing to be moved so that

C is at rest. To obtain the real motion of the ball when b

is fixed, we must compound the rotation about OC with

another about XY. It seems reasonable to suppose
that if the surfaces of contact are equally rough, the total

spin of the ball on the cones will be equally divided between

A and B. The various virtual axes will then be as shown



338 KINEMATICS OF MACHINES.

in Fig. 227, where AO is the virtual axis of a and c, and BO
is the virtual axis of c and b. The point is found by draw-

ing BO parallel to CX when C is the centre of the ball. The
various velocities are easily found graphically, after the

manner of Fig. 224. In Fig. 227 draw PQ representing <oab to

u y o

FIG. 227.

any convenient scale; then PR and QR, drawn parallel

respectively to AO and BO, will represent u)
a . and aj

cb . Each
of these velocities can be resolved into a spin and a roll;

thus PS is the angular velocity of rolling, and RS that of

spinning, at A, while QT and TR are the rolling and spin-

ning velocities at B. We have to show that RT = RS.
Draw RU parallel to AX or BY, and produce BO to meet
AX in Z. Then the triangles AOX, RPU are similar, and
the triangles ZOX, RQU are similar, so that

ILL _ pu ^
~UQ

"
lTfl

'

t/Q
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OX ZX
AX' OX
ZX
AX'

339

But by construction AX=ZX, since AC = CB. Therefore

PU = UQ and SR=RT, so that the spin at A is equal to

that at B.

It is noteworthy that ST represents the total spinning
at A and B, which is readily seen to be equal to a>ab sn

Js

FIG. 228.

The difference of the rolling velocities at A and B is evi-

dently a>ab cos <p.

In order to find the angular velocity of the centre of the

ball around XY, we draw RV parallel to OC. We thus

resolve QR, the real angular velocity of c about the axis OB
relatively to the fixed link, into QV, a rotation about XY,
and VR, a rotation about OC. QV would then be the angu-
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lar velocity to be given to the whole bearing so as to bring
the centre of the balls to rest.

The next example is a three-point thrust-bearing of the

type of Fig. 225 (d), as shown in Fig. 228.

In this case it is evident that the ball must roll relatively

to a about a virtual axis 'OA ^4 2,rpassing through both points

of contact A
V
A V while OB must be the virtual axis of c rela-

tively to the fixed plate b. Let a and /? be the angles made

by the virtual axes with the surfaces of cohtact, then the

velocity diagram PQR is drawn as in the previous example.
On resolving a>

ac and oj
cb into their component spinning and

rolling velocities, as shown by the dotted lines, we find that

Spinning velocity at A
1
= QTl

= w
ac sin a

;

" " B =RS =a>
eb smp

=
^ab'

We find also that

Rolling velocity at A
v
=RT

l
= u)

ac cos a
;

The relative angular velocities for a three-point bearing
in the more usual case where OA

V
A

2
is not perpendicular

to OX will be determined in a numerical example, after

considering the case of a four-point bearing, which may be

worked out by similar methods.

In Fig. 229 A^A^ BJ32
are the points of contact, and

plainly if there is to be spheric motion on the part of

c, A^A 2
and B

1
B

2
must meet at some point on XY.

If this is not the case, slipping will occur at some one

or more of the points of contact, and the relative motion

at these points will no longer consist simply of rolling

and spinning combined. In the figure OA^^ and OB
1
B

2

are the virtual axes of a and c, and of b and c, respectively.

Let 4> be the angular velocity of the centre of the ball,
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so that the linear velocity of the point C in a direc-

tion normal to the plane of the paper will be a)
Q XCL.

Since A is a point on OA,A 2 ,
its linear velocity will be

wabXAM in the same direction. But b is the fixed link

fr( FIXED)

and c is rolling upon it about the axis OB, so that we may
also say that the linear velocity of the point C is <ocb X CB,
and that of A is ajcb X AN. Hence,

Thus
CB.AM
CL.AN
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The angular velocity of the centre of ball relatively to a

is readily found if we imagine that the whole bearing has

given to it an angular velocity w ab . The centre of ball

will then be moving with an angular velocity (&ab (u )

about the axis XY in the same sense as a>
ca ,

and a will be at

rest. Then *

CL
"'"^CA

6^ = CL CL.AN-CB.AM
aj ab ~CA'~ CL.AN

_CL.AN-CB.AM
CA.AN

In the same way we may find an expression for <jj
cb \

for ajcbXAN = wab xAM, so that

>

eb==
AM

The values of the various angular velocities may also be

obtained graphically, as was done in the case of the three-

point bearing of Fig. 228. Draw the triangle PQR (Fig.

229) representing a> ab ,
a>

bc ,
and cuca . Then we can resolve cu

cb

into o)
,
the angular velocity of the centre of the ball

around XY, and w
c ,

the angular velocity about OC.

Similarly wca can be regarded as the resultant of a veloc-

ity a>
c
about OC and a velocity (toab o> ) about XY.

In order to find the spinning and rolling at the points of

contact BI and Bv co
rb

is to be resolved along and perpen-
dicular to the surfaces of contact, giving

angular velocity of spinning at B
1 =Q7\;

"
"rolling at B^RT,;
"

spinning at B
2
=RT

2

'

t

" "
rolling at B

2
=QT2

.

In the same way the velocities at A
t
and A

2 may be found.
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Taking a numerical example, we may determine the

various velocities in the three-point bearing shown in Fig.

230, the dimensions being:

Diameter of balls.................... 0.25 inch

Distance of ball centre from axis (CL) ..0.5
"

Angle of cone of ball-race b............ 30

30

s

0.1 0.2
0._3

0.4 5 0.6 0.7

400 REVS. PER WIN.

FIG. 230.
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After drawing CB, CL, AN, AM, we find CA= 0.108,

CB =0.1 1 5, CL= 0.400, AN =0.218, AM =0.309. Let us

suppose that & a& is 200 revolutions per minute. Then the

velocity of centre of balls

CB..AM _ 200 X o. 1 1 5 X 0.309~
"0.400X0.218

= 81.2 r.p.m. about axis XY.

(CL CB.AM)
Again, ca

=
ab * \CA-CAJW}

( 0.400 _ 0.115 Xo.309 )

3

( 0.108 0^108X0.218 )

= 440 r.p.m. about axis OA,

and
o

iocb
= 200 X ^Hr = 284 r.p.m. about OB.

In order to determine the spinning and rolling we have

Angular velocity of spinning at B
1
= w

cb
sin

ft

(SR on diagram) = 284 X 0.342
=

100.5 r-P-ni.

Angular velocity of rolling at B
l

= wcb cos ft

(SP on diagram) = 284 X 0.9396
= 267 r.p.m.

Angular velocity of spinning at A
2
or A = a>ac sin a

(QT2
or QT 1

on diagram) = 440 X 0.5
= 2 20 r.p.m.

Angular velocity of rolling at A
2
or A

l
=u>

ac cos a

(RT2
or RT

l
on diagram) = 440 X 0.866

= 381 r.p.m.

The reader should check these numbers by drawing the

velocity diagram for himself, and measuring the various

lines representing the velocities.

To compare the relative merits of different ball-bearings

we should have to calculate not only the velocities, but also



SPHERIC MOTION. 345

the pressures between the surfaces at the points of contact
;

the work wasted in various cases could then be estimated.

This part of the work, however, belongs to Dynamics
rather than to Kinematics.

For further information on the subject of ball-bearings

the reader is referred to Sharp's "Bicycles and Tricycles,"

Chapter XXV, and to a number of papers in various engi-

neering periodicals.*

*
Engineering, April 12, 1901. Zeitschnft d. V. D. /., Jan. 27, 1900; ibid.,

Jan., 1901, pp. 73 and 119; ibid., Jan., 1901, p. 332.



CHAPTER. XIII.

KINEMATIC CLASSIFICATION OF MECHANISMS.

loi. Historical Sketch. In treating of*- the theory of

Mechanisms, it has been the aim of many writers to devise

some method of analysis whereby mechanical contrivances

in general might be resolved into their several component

parts, capable of being represented, if necessary, by symbols,
and capable also of being recombined in such a fashion as to

produce new mechanisms. Such a system, if complete and

workable, would of course be of great service to the inven-

tor, and would save him from the fate, only too common,
of designing with great toil some device which has been

known and used for years. In the words of Willis,
' '

there

appears no reason why the construction of a machine for

a given purpose should not, like any usual problem, be so

reduced to the dominion of the mathematician as to enable

him to obtain, by direct and certain methods, all the forms

and arrangements that are applicable to the desired pur-

pose, from which he may select at pleasure." It must be

confessed that so far no such system of analysis and synthe-
sis has been found of any great practical value; many of

the proposals, however, are interesting and suggestive, and

a brief account of some of them will not be out of place in

this book. Before entering upon it we may glance at the

historical development of the subject of the Kinematics

of Machines.

A book dating from the eighteenth century* seems to

be the first treatise on machines which can be considered at

*
Leupold. Theatrum Machinarum. 1724.

346
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all systematic. Leupold's predecessors had indeed de-

scribed sundry machines and devices, but their order of

arrangement was always arbitrary, and no attempt was

made to study machines by considering the relative motions

of their parts. The theory of machines, treated either from

the kinematic or dynamic standpoint, did not in fact exist.

Euler * taught that the motions of rigid bodies should be

investigated by the methods of geometry, as well as by the

aid of dynamics, but it does not appear that he had in view

the special application of these principles to the motions of

the parts of machines. Monge in 1794 conceived the idea

of treating machines as contrivances for changing one kind

of motion into another, and was the first to suggest that the

essential "elements of machines" should be enumerated

and studied. His system formed the basis of the course

adopted in the Ecole Polytechnique soon after its founda-'

tion a course laid out by Lanz and Betancourt, f and classi-

fying the motions of the parts of machines as (i) rectilinear,

(2) circular, or (3) curvilinear. Combinations of these

motions are considered, while each motion may be contin-

uous or alternate. The wrork of Lanz and Betancourt

was incomplete, because no attempt was made to calculate

these various motions
;
their scheme underwent many mod-

ifications, and has not survived. A system somewhat
similar in intention, but differing in detail, was propounded

by Borgnis.^ It has met with the same fate.

It is to the physicist Ampere that we owe an important
advance. He saw clearly that a mechanism should be

studied as
' '

an instrument by the help of which the direction

and velocity of a given motion can be altered"
;
thus going

further than Euler, and laying the foundations of that science

of Machines to which, in accordance with his suggestion, we

apply the name Kinematics.

* Euler. Theoria Motus Corporum. 1765.

f Lanz and Betancourt. Essai sur la composition des Machines. 1808.

J Borgnis. Traite complet de Mecanique appiiquee aux Arts. 1818.

Ampere. Essai sur la philosophic des Sciences. 1834.
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Ampere was followed by Willis,* who confined himself

to the consideration of what he termed the
' '

Elements of

Pure Mechanisms," and did not deal with the
' '

generalities of

motion." The ''Principles of Mechanism" takes a less

abstract view of the. science of Kinematics than Ampere
seems to have held, and in tHat book the author endeavors

to form a system embracing all the elementary combina-

tions of mechanism, and admitting of an investigation of

their modifications of motion. He does not attempt to

deal with dynamical questions, but gives practical and use-

ful solutions of many leading problems in applied kinematics.

His system of classification will receive some consideration

in a later section; we shall see that its groundwork is the

mode in which the motion is transmitted, or, as we should

now express it, the kind of relative motion existing, in

various mechanisms.

In several of his books Rankine f deals with kinematical

questions, treated under such titles as the Geometry of

Machinery and the Theory of Mechanism. His views were in

some few respects erroneous and incomplete, and his nomen-

clature has not been followed to any large extent, but his

system of dealing with the motion of machine parts by the

aid of instantaneous centres, and his methods of solving

certain special problems, were in many cases far more power-
ful and effective than any previously employed.

The appearance in collected form of the kinematical

writings of Reuleaux ^ furnished students with the first

text-book whose methods have met with really wide accept-

ance. It is to Reuleaux that we owe the idea of a mechan-

ism regarded as a chain made up of links any one of which

irtay be considered as being fixed. Starting with this con-

* Willis Principles of Mechanism. 1841 (Second Edition 1870.)

t Rankine. Applied Mechanics 1858
Manual of Machinery and Mmwork. 1869

J Reuleaux. Theoretische Kinematik. English Translation by Dr. Kennedy
1876.



KINEMATIC CLASSIFICATION OF MECHANISMS. 349

ception, and taking account of the relative motion of these

links as determined by the pairing of their elements, we are

led to a wide and comprehensive view of the whole kinematic

theory of mechanisms. The earlier work of Reuleaux has

now been supplemented by the publication of a second part
of his text-book.*

Burmester's important treatise | is not so well known to

English-speaking readers as it should be. Only the first

volume, dealing with plane motion, has yet been published.

Burmester's method of treatment differs from that of Reu-

leaux in making a more liberal use of purely mathematical

and geometrical principles^ but the two authors agree in

their fundamental conception of the subject, and, to a large

extent, in their nomenclature and definitions. A consider-

able amount of space is devoted by Burmester to the kine-

matics of a plane rigid system ;
he deals with the principles

of constraint in plane motion, and passes on to the consider-

ation of plane mechanisms and the relative displacement,

velocity, and acceleration of their various parts. The second

volume is to treat, after a similar fashion, of non-plane
motion.

102. Classification of Willis. Babbage's Notation. The

following sections contain a short account of some of the

schemes 'suggested for classifying and symbolizing the vari-

ous kinds of mechanisms.

Like almost all his predecessors, Willis contented him-

self with proposing a scheme of classification without en-

deavoring to invent any notation, or system of signs, by
which a given mechanism could be represented by a formula.

Without apparent reason, Willis excludes from his system
all hydraulic machines. Some other classes of mechanism,
for example those including springs, are also omitted. In

fact he considers as
'

'pure mechanisms" only certain types

* Reuleaux. Die praktischen Beziehungen der Kinematik zu Geometric und

Mechanik. 1900.

\ Burmester Lehrbuch der Kinematik. 1888.
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of machines, which seem to have been selected in a some-

what arbitrary fashion. In these machines, according to

Willis, motion is transmitted in
' '

elementary combina-

tions
"
by five methods, namely :

Division. Method of Transmission. Example.

A. By rolling contact. f* Toothed gearing of various

sorts.

B. By sliding contact. Cams, screws, worm- and

screw-gearing, escape-

ments.

C. By wrapping connection. Bands, chains, and other

gearing.

D. By linkwork. Cranks, eccentrics, and
other linkwork. Ratchet-

wheels and clicks.

E. By reduplication. Tackle of all sorts.

Each of these five main divisions is again separated into

three classes, in which the velocity ratio is either (a) con-

stant, (b) varying, and (c) constant or varying; while due

regard is had to the question whether the
' '

directional rela-

tion" is constant of varying.
This system or classification has not been widely used,

and possesses certain manifest imperfections. It was, how-

ever, a great advance on that of Lanz and Betancourt or

on that of Borgnis, because it was designed with a view of

facilitating calculations regarding the relative motions, or

velocity ratios, in mechanisms, rather than with the aim
of classifying mechanisms for purely descriptive purposes.

In the
"
Principles of Mechanism" Willis devotes some

space to the exposition of the scheme of notation proposed

by Babbage ;

* a scheme devised by that ingenious inventor

primarily for the purpose of clearly representing the rela-

tions of the parts of his calculating-machine, and especially

* A Method of Expressing by Signs the Action of Machinery. Phil. Trans.,
1826.
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applicable to complex trains of wheel and ratchet gearing.

As this notation involves the construction of an elaborate

sheet or diagram for each machine, it by no means answers

the purpose of a system such as that of Reuleaux, which will

be described later, where each mechanism is to be denoted

by a formula of three or more symbols. Babbage 's method
of notation corresponds more closely to that employed by
clock and watch-makers, in which the various wheels are

represented by the numbers of their teeth, written in suc-

cessive lines, placing vertically over each other the numbers

of wheels which gear together. Thus

48

6-45
6-30

would represent a wheel-train comprising a "great wheel"

of 48 teeth gearing with a pinion of 6 teeth, the pinion-arbor

or axis carrying a second wheel of 45 teeth, gearing in its

turn with a 6-tooth pinion whose arbor carries an escape-

wheel of 30 teeth. Babbage, however, shows on his dia-

gram the kind of motion, whether uniform, intermittent,

variable, or continuous, of each part with relation to the

frame of the machine, and Willis gives an interesting exam-

ple* of such a diagram, as constructed for a sawmill. It

would appear that Babbage 's notation, while extremely
convenient in certain cases, by no means answers the pur-

pose of a general scheme by means of which the mode
of action and relative motions in any given mechanism

may be indicated. .

103. Classification and Notation of Reuleaux. Such a

system has been devised by Reuleaux, f and is explained and

used in his text-book. It is intended to be perfectly general

in its application, and includes signs of three kinds, which

denote (i) the class or name of the body or link referred

*
Principles of Mechanism, Ed. 1870, p. 288.

f Kinematics of Machinery, English Ed., p. 251.
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to, as distinguished by its geometrical shape or its nature ;

(2) the form of the body, whether solid or full, or hollow or

open, whether plane or curved; and lastly, (3) the relation

of one element to its companion, or of one link to the next

in the chain. Some special symbols are required to indicate

incomplete pairs, methods of closure, and so on.

In the first division the following name symbols have been

adopted :

S Screw. G Sphere or globe.

R Solid of revolution. A Sector or arc.

P Prism. Z Tooth or projection.

C Cylinder. V Vessel or chamber.

K Cone. T Tension-organ.

H Hyperboloid. Q Pressure-organ.

These symbols require no explanation.

With regard to the next kind of symbols, those of form,

it is evidently necessary to indicate among other particulars

whether a given body is full, open, or plane; whether its

profile is curved or non-circular, or has upon it teeth; or

whether its profile or section is prismatic. A link, as we
have seen, may be liquid or gaseous, and a large number of

other cases may be suggested, all of which should be covered

by any general system of symbols. Reuleaux proposes to

do this by adding to the Roman capital letters which he

selects as the name-symbols, certain form-symbols, written

to the right of the name-symbol, and either above or be-

low it. A few examples will illustrate the way of doing
this. We may use the following :

f full or solid. plane.

open or hollow. ~ curved profile.

From these and the preceding symbols we have, among
many others :

C+ full cylinder. C~ open cylinder.

S+ screw or bolt. S~ nut.
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P hollow or open prism whose base has a curved outline.

C/ non-circular spur-wheel with external teeth.

K^ face-wheel (plane bevel-wheel).

T^ prismatic tension-organ (flat belt).

Tc circular tension-organ (wire).

QA liquid pressure-organ.

QY gas, air, steam, etc.

V~ cylinder of an engine or pump.
V4"

the piston working in it.

The third class of symbols express relation, as regards

pairing, linkage, or fixing, or as regards position and mag-
nitude. Pairing is denoted by a comma, linkage by a dot

or dotted line
;
a fixed link is indicated by underlining, and

the usual signs are employed for equality, parallelism, and so

on. For example:

C~ . . . C~ link connecting two open cylinders or eyes.

P
2 , C~^ rack pairing with a pinion.

S+ = S~ screw pair, screw and nut being of course equal
in size.

Incompleteness is indicated by the use of the sign of

division, so that we get :

C~
portion of an open cylinder.

C+
-r- a full cylinder paired by force-closure.

The method of closure is indicated by the divisor.

As an example of the method of writing out the formula

for a simple mechanism, we may refer to Fig. 133. The

spur-wheel mechanism acd would be written (d being the

fixed link) :

C+ . . I . . C +
,
C +

. . I . . C* C- .. .I...C-

(referringto link a, link b, and linkJ).
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Here means con-axial ; ,

means parallel.

After describing and enumerating the various symbols,

Reuleaux proceeds to show how the resulting formulae may
be shortened. He employs (S), (C), and (P) for a screw

pair, a turning pair, and a sliding pair, respectively, and
<t

"
' ^

would write (C4")~ for "a cham formed of four links, each

connecting two parallel cylindric elements"; d being the

fixed link and a the one which drives the chain. This is of

course the quadric cylindric crank chain. His symbols
have a very wide range of adaptability ;

the reader will be

interested, for example, in the formula for a paddle-steamer,

which is

e+v.v'| ...c+, QA...QA.V- ... + ...c-

b_

This may be contracted to (C
j C^VA)^.

Here b is the liquid link, a the paddle-wheels, and c the

ship itself. VA is a contraction for V~, QA ,
and C2A for

C 8 , QA ; + is the sign for "crossed at right angles" when

used as the symbol of relation of the elements of a link.

The original text-book must of course be consulted if

any real acquaintance with the scheme is desired
;
the exam-

ples given here will serve to indicate the scope and posi-

bilities of the system.

104. Classification of Hearson. The most recent system
of notation devised by Professor Hearson* differs essentially

from that of Reuleaux, for it is based on a somewhat different

conception of the meaning of the term machine. Hearson

considers that a machine is to be regarded as "an embodi-

ment of a combination of elementary motions (of which it

will be found that the number of kinds is comparatively

limited)"; these "elementary motions" being the relative

motions of the machine-parts. He treats first of plane
mechanisms, and suggests the following symbols :

* Phil. Trans., 1896, Vol 187, p. 15.
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a motion of complete and continuous relative rotation.

U a swinging to-and-fro motion, like that of a pendulum,

consisting of successive partial rotations in opposite
senses.

1 a sliding motion.

Taking a four-link mechanism as the general case (three

and five or more links being inadmissible in simple machines

for reasons already given), it is shown that there may be in

such a mechanism either

four O motions,

or three O's and one U
j
under certain conditions as

or two O's and two U's, ) to length of links,

or four U motions;

while it is impossible to have one motion only and three U's.

On considering the substitution of I motions for O's and

U's, it is found that (in all) fourteen combinations of O's,

U's, and I's are permissible.

In order to denote such motions as that of the teeth of a

pair of spur-wheels, Hearson assigns the symbols

W for a combination of two U motions
;

oo for a combination of two O motions
;

C for the wrapping motion of a belt on its pulley.

He further proposes to distinguish betwreen the sense of

motions by the use of large and small letters, so that, for

example, two pulleys mounted on a frame joined by a crossed

belt would be OcCO or oCco
;

if an open belt were employed
the formula would become OcCo or oCcO.

Passing to spherical mechanisms, a similar system is

outlined ; certain limitations, however, are imposed by
the differences between plane and spherical geometrical

relations.

Adopting the symbol V for helical motion having a con

stant pitch ratio, and H for one in which the pitch ratio

varies, it is found that we may have the mechanisms UVI,

VVI, VVU, and VVV, of which there are eight inversions in
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all. With H motions four combinations, with eleven inver-

sions, give us UHI, VHI, VHU, and VHV; these may be

classed under the head of cylindrical mechanisms. Hearson

proposes to group all remaining simple mechanisms in a

fourth division, comprising those in which the axes neither

meet nor are parallel.
"

He the?? discusses compound mech-

anisms in which there are more than four separately moving
pieces, and yet the motions are of a determinate character.

This leads to a method of formulating such mechanisms
;

it

will be sufficient here to give as an example the formula for

the portion of a locomotive consisting of frame, piston and

rod, connecting-rod, crank-axle, coupling-rod, and the crank

of a second coupled driving-wheel. This is

6_oT I-U-o-O.
I I

To explain this formula, it is to be noted that the link

shown by the thick line is the frame or the link which is re-

garded as being fixed. The links which move in contact with

it are the piston and rod (U I) ,
the crank-axle (o O) ,

and

the coupled driving-wheel and its axle (O o) . The connect-

ing-rod will be denoted by (U o), and the coupling-rod by
(O o) ,

the frame being (o I O) . Here the large letters

refer to turning motions in which the angle is increasing,

while small letters indicate those in which the angle is dimin-

ishing. The lines connecting the letters of the complete
formula show which motions are possessed by the various

links. Hearson 's scheme does not appear to contemplate
the inclusion of fluid links, and, as outlined in the paper

cited, is by no means so complete as that of Reuleaux.

105. Remarks on Classification. It is not surprising that,

up to the present, no system of kinematic classification has

proved so simple, and at the same time so wide in its scope,

as to be generally accepted as an assistance both to the in-

ventor and to the student of the theory of mechanisms.

The nomenclature and classification of Reuleaux and the
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suggestions of his critics * have rather an academic than a

technological interest, and indeed it seems probable that the

inevitable complexity of any such scheme, when it finally

develops itself, will render it more suitable to the lecture-

room than to the drawing-office.

From the instances already quoted it will be seen that

kinematicians have taken two distinct points of view in

regarding the nature of a machine, and this fundamental

divergence has necessarily affected their ideas when search-

ing for a scheme of-classification. On the one hand we have
the school followed by Hearson and others, who take (with
considerable modification) the ideas of Monge and Willis as

a basis, and look first at the relative motion of the machine-*

parts; on the other we have the school of Reuleaux, who
consider first the forms of the elements, or working sur-

faces, which control these relative motions. Whichever line

is taken, we are soon driven to the conclusion that in many
mechanisms the actual relative motions produced depend
not only on the forms of the elements, but also on the way
in which the driving forces and the resistances act on the

various links of the chain. Reuleaux is thus led to his idea

of force-closure of pairs and chains, which has perhaps met
with more criticism than any other part of his work, and,

to complete his classification, he is obliged to introduce

indirectly certain dynamical conditions.

While it is the province of the science of Kinematics of

Machines to deal solely with questions of motion, apart
from dynamic considerations, it does not seem probable that

any really effective system of machine classification can be

based simply on kinematic relations.

* For example see Hearson, loc. cit.; Koenigs, Comptes Rendus, 1901, Aug. 15

and 19, Sept. 2 and 23.





EXERCISES, PROBLEMS, AND EXAMPLES

CHAPTER I

1. Give a brief account of the scope and objects of the study of kine-

matics of machines.

2. Define a machine, a structure, a mechanism.

3. What is meant by constrained motion? Give four examples oi

ways in which constraint is produced in the motion of the parts of actual

machines.

4. Explain the meaning of the terms "
higher pair,"

"
lower pair,"

"
inver-

sion,"
"
element,"

"
axode,"

"
centrode."

5. Define plane motion. Show how to find the centrodes of two bodies

having relative plane motion.

6. In the case of three bodies having plane motion show that their three

virtual centres will at any instant lie on one straight line.

7. Into what classes may relative motion be divided? Give examples
of each.

8. Explain what is meant by a "
pair of elements." Enumerate the three

classes of
" lower pairs

" and define the relative motion in each case.

9. Define a centrode and show that the relative motions of two links in

any simple mechanism may be imitated by rolling one centrode upon another.

10. Explain the meaning of the terms "
link,"

"
inversion of a pair,"

"
closure of a chain."

11. A body moves with variable linear velocity. What is meant by the

instantaneous velocity of the body? How can that velocity be determined

from observations of the times in which the body describes various known
distances measured from a given point on its path?

12. Explain the following statement: The two centrodes correspond-

ing to the relative motion of two bodies always touch at a point.

13. Two bodies a and b have relative motion in a plane. Supposing b

to be the fixed body, explain how to find the instantaneous axis of a with

regard to b, having given the linear velocities of two points of a at the instant

considered.

A steamer going 20 knots (2026 ft. per minute), has paddle-wheels 16 ft.

diam. making 48 r.p.m. Make a sketch showing the position of the instan-

359



360 KINEMATICS OF MACHINES.

taneous axis of the wheels with relation to the water, and mark on the sketch

the distance between this axis and the centre line of the paddle-wheel shaft.

14. A body is represented by a straight line 3 ins. long, one end of which

moves against a bank making 120 with the horizontal, and the other end

moves on level ground. Draw the space and body centrodes for the extreme

positions of the body, taken when leaning wholly against the bank and

when wholly on the ground.
'

(For space centrode, assume bank and ground fixed and body moving.

For body centrode, assume body fixed and bank and ground moving.)

15. A kinematic chain consists of five straight bars of equal length,

each connected to two others by turning pairs, all the axes being parallel.

One link being fixed, draw the chain (length of each bar 2 ins.) and show,

by actually drawing possible positions, that the motion of certain links is not

constrained.

1 6. Draw sectional elevations and end views of kinematic pairs in which

(a) rotation about an axis is possible, but no other relative motion of the two

elements can occur, and (6) rotation about "an axis is combined in some desired

ratio with movement along that axis.

CHAPTER II

1. If velocity is represented by a straight line, how may we represent

its magnitude and direction ?

2. In experiments on a field gun the velocity of the projectile was found

from the following data :

Time (sec.) 0.96 1.45 1.95 2.46 2.97 3.51

Distance (yds.) 400 600 800 1000 1200 1400

Calculate the velocity at 500, 700 and 900 yds. and find the velocity with

which the shell left the muzzle.

3. Explain how to find the acceleration-distance curve from a velocity-

distance curve and deduce the scale for the acceleration.

4. Distinguish between an "
orthogonal

" and a "
polar

"
diagram of

velocity.

5. Define Periodic Motion and explain what is meant by the
"
period

"

and the
"
amplitude

"
of Simple Harmonic Motion.

6. Show how to find the
"
distance-time,"

"
velocity-time

" and "
accel-

eration-time
"

polar curves for simple harmonic motion; also show that in

simple harmonic motion displacement is proportional to acceleration.

7. Given two points a and b each, having simple harmonic motion, the

amplitudes being OA and OB respectively, show how to find their relative

displacement at any instant.
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8. A particle is moving at a certain instant along a circular path 2 ft.

radius with a linear velocity of 10 ft. per second. Its linear acceleration

measured along a tangent to the path is (at the instant considered) 30 ft. per
second per second. Draw an acceleration diagram, and mark on it the direc-

tion and numerical value of the real acceleration of the particle.

9. A car starts from rest with a uniform acceleration of 2 miles per hour

per second. After attaining a speed of 16 miles per hour the power is shut

off, and the car runs with a uniform retardation of T\ mile per hour per
second. Find the time after starting in which the car will have travelled

970 ft. Draw a velocity diagram on a time base.

10. A car having wheels 33 ins. in diameter is accelerated at the rate

of 2 miles per hour per second. Calculate the angular acceleration of the

wheels. If this acceleration is uniform, find the total angle described in 8

seconds.

11. A mine hoisting engine brings its load from a depth of 1200 ft. to

the surface in one minute. At starting the acceleration is uniform, and full

speed is attained after the cage has travelled 150 ft. At the end of the trip

the cage is brought to rest with uniform retardation in the same distance.

Calculate the acceleration, and the maximum speed of hoisting, and draw a

velocity diagram on a time base.

12. Draw a velocity diagram on a displacement base for the above case.

13. A stone is thrown vertically upwards with a velocity of 128.8 ft. per

second. Draw its diagram of position, velocity and acceleration (to any
convenient scales) on a time base.

14. Explain clearly how to obtain an acceleration curve, drawn to a time

base, from a velocity curve drawn to a displacement base. If the latter curve

is drawn to scales of 10 ft. per second to the in. and 50 ft. to the in., what

will be the scale of the acceleration curve?

15. A street car starts from rest, and its distance from the starting point

is observed to be:

Time (sec.) i 2 3 4 5 6 7 8 9

Distance (ft.) 5 13 25 41 65 91 117 143 169

Draw curves of position, velocity and acceleration on a time base to any
convenient scale, marking on your diagram the numerical values of (a) the

velocity at the end of three seconds, (6) the average acceleration during the

first second.

1 6. In measuring the angular velocity of the flywheel of an engine at dif-

ferent points of its revolution, the following numbers were obtained:

Crank angle o 30 60 90 120 150 180 deg.

Angular velocity 400 480 520 505 475 430 400 deg. per sec.
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Make a velocity diagram showing these results, and from it draw a diagram
of angular acceleration. Mark on your diagram the maximum value of the

angular acceleration in degrees per second per second. (Take a horizontal

scale of one inch=30, and a vertical scale of one inch= 200 per second).

17. A ladder 15 ft. long stands against a wall and makes an angle of 30

to the vertical
;

it its foot is moved inward with a velocity of one foot per

second find the velocity of its, upper enxl. Prove the method you employ.
T 8. From the following data plot

distance-time

velocity-time \ curves,

acceleration-time
j

and mark the scales clearly. .

Time. Distance. Time. Distance.

sees. o ft. 4 sees. 22 . 5 ft.

1 7-5 5 25.75

2 13.3 6 28.5

3 J8-5 7 3-5

(Data to be obtained for each i sec. interval.)

19. In determining the velocity of a shot from a rifled gun, screens 150

ft. apart were cut by the projectile in the following times in seconds: o,

0.0666, 0.1343, 0.2031, 0.2729, 0.3439, 0.4159. Draw a curve of position,

velocity and acceleration, and mark the numerical values of the velocity

and acceleration at each screen.

20. A train starting from rest has the following speeds at the times given:

5 10 20 30 40 50 60 70 seconds

4.4 8.1 14.0 20 24.5 31 35 37 m.p.h.

Draw the velocity diagram from these data, and from it obtain the

acceleration curve.

21. A tide gauge showing the fluctuation of the water level at a certain

port indicates a rise and fall of about 17 ft. with a high water lasting,

with small variations, approximately for three hours. Show that an

effect similar to this could be produced by the simultaneous action of two

simple harmonic tides, one with a period of twelve hours and an amplitude

of 8| ft., the other with a period of six hours and an amplitude of i J ft. (This

effect is something like that actually found to exist at Havre.)

22. The following data were taken from a test on a street car:

Plot the velocity-distance and acceleration-distance curves. State clearly

the scale of the acceleration diagram.
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Distance:

O 100 200 300 400 50O 600 700 800 900 1000 1 100 J 200 ft.

Velocity:

o 16.7 25.5 32 37 41 44.9 48 49.25 47 39.5 28

CHAPTER III

1. How many virtual centres are there in a quadric crank-chain? Ho\v

can we find their respective loci ?

2. Give a construction whereby, given the uniform angular velocity of

one link of a quadric crank-chain, we can find the angular velocity of any
other link. Is the construction applicable to any position of the mechanism?

3. Describe the inversions of a quadric crank-chain and state what is

meant by the terms
"
change point,"

" dead point."

4. A feathering paddle -\\heel 20 ft. diameter makes 50 r.p.m., the speed of

the ship being 2500 ft. per minute. The floats are 40 ins. deep with 5 ins.

immersion of the top edge. The float levers are 40 ins. long. Design the

linkage necessary for operating the floats.

5. Sketch the arrangement of the links in the common pantagraph and

prove the essential property of this mechanism.

6. Sketch the Peaucellier straight-line motion, explain its action and

prove that its tracing point describes a straight line.

7. In a Watt straight-line motion with a main lever of length a and in

FIG. i.

which the line of stroke x is distant c from end of main lever, show that the

best stroke S=4\/c(a c').

8. Design a Watt straight-line motion if the stroke is to be 12 ins. and
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the centres are on the diagonal corners of a square whose side is 30 ins. The

tracing point moves along a line bisecting two opposite sides of the square.

Show where the tracing point must be placed and draw its complete path.

Scale, 3 in. = i ft.

9. Two equal rods, AB and BC, six ins. long, are hinged together at B.

Find the instantaneous centre of AB, with regard to a line AC, when A is

6 ins. from C and is moving towards 0. Find also the direction of motion

at a point D 12 ins. from A in AB produced, and the velocity of B and D
if 4 moves at the rate of i ft. per second.

10. A mechanism consists of four links connected y turning pairs, the

lengths being AB= 6 ins., EC 30 ins., CD=24 ins., and DA=24 ins. If

AD is fixed and AB rotates with a uniform angular velocity of 10 radians per

second, find the linear velocity of C in the following three positions, without

making use of instantaneous centres. Prove the method you employ.

(a) AB parallel to DC and perpendicular to AD.

(b) AB in line with AD produced.

(c) AB midway between the above positions.

11. Sketch the Tchebicheff straight-line motion. Is it exact or approxi-

mate?

12. Describe two forms of approximate straight-line motion, derived

from the quadric crank-chain.

13. Describe the linkage forming the steering gear of an automobile and

controlling the movement of the front wheels.

14. Sketch a form of straight-line motion whose action depends on the

copying of an existing straight-line guide.

15. Explain how, by means of an application of the quadric crank-chain,

the floats of a paddle-wheel may be made to
"
feather."

The diameter of a paddle-wheel is 29 ft., the floats 4 ft. deep, and the

float levers 2 ft. 3 ins. long. In the lowest position the floats are vertical,

and the immersion of their upper edges is 2 ft. 3 ins. Find, graphically,

the lengths of the guide rods, and the position of the centre about which they

rotate as the floats feather, when the slip of the paddle is 20 per cent.

1 6. Plot a polar curve of angular velocity of the beam in a beam engine
when the crank makes 80 r.p.m.

Length of the fixed link 5 ft., 10 ins.

". lever , 40 ins.
"

crank v 18 ins.
"

connecting rod 5 ft. 6 ins.

(Scale, i in.= i ft.)

17. Design the linkage of a feathering paddle-wheel for the following
conditions:
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R.P.M. of wheel, 37.

Diameter of wheel (centre of float) 14 ft.

Diameter of wheel (outer edge of float) 16 ft.

Speed of ship, 15 miles per hour.

Level of water, 5^ ft. below centre of wheel.

Float lever, 12 ins long.

Draw to a scale i m.= i ft.

18. Find how far the tracing point P varies from motion in a straight

FIG. 2.

line when the point C has a vertical movement of -G in. (Crosby indicator

straight-line motion as shown in Fig. 2.

For first position place the mechanism in the position as shown with

DC and AB parallel. Move the point C towards the top of the figure.

CHAPTER IV

1. Describe the slider crank-chain; make sketches showing its various

inversions, and give examples of their occurrence in practice.

2. If a piston moves with S.H.M., show that for a crank angle its posi-

tion and velocity are defined by the equations .

xr(i cos 0). V p=ro} sin 0;

where #= distance from end, r=radius of crank, F p
=
piston velocity, w=angu-

lar velocity of the crank.

3. If the angularity of the connecting rod is taken into account show
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that the
"
error

"
in the expression for piston velocity in Question No. 2

is approximately

Vc sin 26

2N '

where AT=ratio of connecting, rod to cr^nk, and Vc
= linear velocity of crank

pin.

4. A steam engine has a crank 18 ins. long and a connecting rod 60 ins.

long. Show how to find the instantaneous centre of the connecting rod,

and find the numerical values of the velocities of its ends and middle point
when it is perpendicular to the crank and the latter is making 180 r.p.m.

5. Given the radius of crank BC and length of connecting rod AC, show

how to find graphically the acceleration of the piston for any crank posi-

tion, given oj the angular velocity of crank.

6. In a direct-acting steam-engine deduce expressions for piston velocity

and piston acceleration in terms of crank-pin velocity and crank angle.

7. Show how to draw polar diagrams of piston velocity and piston accel-

eration and explain how to find the scales for these diagrams.

8. In an oscillating engine show graphically how to find the angular

velocity of cylindei% if the angular velocity of the crank is known.

9. Prove that the angular acceleration of the cylinder in an oscillating

engine is,

FC
2 F N sin 6 (TV

2
-!)

~7~ \_(N
2-2N cos0+i)

2
J

'

10. Give a graphical method for finding the instantaneous velocity of

the tool in the Whitworth quick-return mechanism and in the crank-shaper

mechanism.

11. Give a method for finding the velocity of the swinging link (in terms

of the velocity of the crank) in the
"
swinging slider-crank

"
inversion of the

slider-crank chain.

12. Describe a quick-return motion containing one sliding and three

turning pairs, stating the forms of the links in some actual machine with

which you are acquainted and mentioning the purpose of such a mechan-

ism.

13. Make a diagrammatic sketch showing the relation of the various

links in the double slider-crank chain. Mark the various virtual centres

for the position in which you draw the mechanism.

14. A quick-return motion consists of a crank AB, 6 ins. long, turning

about A, and a slotted link CD driven from the point B. The distance AC
is 9 ins. The crank AB moves with a uniform angular velocity and makes

50 r.p.m. Find:
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(a) The angular velocity of AB in radians per second.

(b) The maximum angular velocity of CD in each direction in radians

per second.

(c) The ratio of the times occupied by the backward and forward motions

of CD.

15. Design the quick-return mechanism for a crank shaper for 10 ins.

stroke, time ratio ^, fixed centres 6 ins. apart.

1 6. Deduce the expressions for piston velocity and acceleration in the

double slider-crank chain when link d (frame) is fixed.

Piston velocity=VP VC sin 0;

V 2
C

Acceleration= a= - cos 6.

r

17. Sketch the arrangement and explain the action of "Oldham's

coupling." How is it classed kinematically ?

18. Sketch a crossed-slider-crank chain and indicate its practical applica-

tions.

19. Sketch a Scott-Russell straight-line motion and show how it is mod-

ified in the case of the Thompson steam-engine indicator.

20. Make sketches showing the various inversions of the double slides

crank chain. Show that a point on the link-carrying elements of the twc

turning pairs describes an ellipse with reference to the link-carrying element-

of the two sliding pairs.

21. Sketch the mechanism known as Rapson's slide. Enumerate thi

pairs cf elements it contains, and mark on your sketch the position or its vari

ous virtual centres.

22. Draw linear curves of piston velocity and acceleration on a piston

displacement base for a direct-acting steam-engine, given length of crank

6 ins., connecting rod centres 56 ins., speed 250 r.p.m. Show clearly the scale

of velocity and acceleration.

23. Design a crank shaper, given stroke 16 ins., crank 4 ins., time ratio

advance
of - =|; and draw the polar curve of angular velocity of swinging

return

link.

Find the maximum velocity of the tool in ft. per sec. if the crank makes

50 r.p.m. (Draw half size and take 15 angle intervals.)

24. Design a Whitworth quick-return motion, given distance between

centres 8 ins., time ratio 2:1, stroke 16 ins. Draw a polar curve showing

the angular velocity of the swinging link. At what speed must the crank

rotate to give a mean cutting speed of 12 ft. per minute? (Draw 3 ins. to a

foot and take 15 angle intervals.)
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CHAPTER V

1. Having given a mechanism in which the positions of all the virtual

centres can be found, show how to find the velocity ratio of any two links.

2. What is a
"
velocity-image" ? Explain by the aid of an example.

3. Show how to draw the acceleration image for the connecting rod in

a direct-acting steam-engine.

4. Draw "
polar

"
velocity and acceleration diagrams for four positions

of the mechanism of Exercise 14, Chapter IV, showing fof- each position the

velocity and acceleration-images of the various links.

5. Draw similar diagrams for four positions of the mechanism of Exercise

1 6, Chapter III.

CHAPTER VI

1. Give three examples of the ways in which elements may be trans-

formed into different shapes, while retaining their original relative motion.

2. Give an example of, and state what is meant by:

(a) Expansion of an element.

(b) Reduction of a chain by use of centrodes.

3. What is meant by the term "
closure of a mechanism" and how may

it be effected?

4. Give three examples of the closure of incomplete chains.

5. Explain what is meant by the term " reduced mechanism" and give

example.

6. Find the loci of the instantaneous centres of b relatively to d and of

d relatively to b

where &=^=32 ins. long.

a=c=2 ins. long.

(see Fig. ma, page 170, paragraph 57)

7. Give three examples of the force-closure of pairs in actual machines.

8. Taking the mechanism of Fig. 1 10 and supposing that a swings through

30 on each side of its mid position, find graphically the change in the

total travel of c which has been effected by the omission of the link b of

Fig. 88.

Length of AE (Fig. 88) =3^ ins.

Length of link a (Fig. no) = 3! ins.
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CHAPTER VII

1. What is meant by a "point of restraint"?

2. Show that an unrestrained body may move in six different ways, and

hence show that the least number of points of contact by which a body can

be constrained to move in a particular way is five.

3. Draw the centrodes corresponding to the relative motion of an equi-

lateral curve-triangle and its circumscribed square.

4. What condition must be fulfilled for uniform angular velocity ratio

in wheel gearing.

5. What are the two curves which are most frequently used as profiles

for wheel teeth and which fulfil the condition of Question 4? Why are

these curves selected?

6. Prove that in a pair of spur wheels, if the tooth profiles are such that

the common normals at the points of contact pass through a fixed point

on the line of centres, the angular velocity ratio of the wheels is constant.

7. Prove that involute wheel teeth will work together with uniform

velocity ratio, and show that this will be the case even if the distance between

the wheel centres is changed.

8. Design involute teeth profiles for a spur wheel from the following

data:

Diameter of pitch circle 20 ins.

Number of teeth . 30

Points of teeth 0.3 of pitch

Roots of teeth 0.4 of pitch

Side clearance 0.04 of pitch

Slope of generating line 75 to line of centres

9. In a pair of spur wheels, having given the profile of the tooth of one

wheel, show how to find the shape of tooth of another wheel which will

work with the given form with uniform velocity ratio, and prove the correct-

ness of your method.

10. A pair of spur wheels are required to give a velocity ratio of 4.5 to

i and the smaller wheel is to have 30 teeth of 2 in. pitch. Find the distance

between the centres of the wheels.

11. Design tooth profiles for a rack and pinion with involute teeth. The

pinion to have 12 teeth. Diameter of pitch circle is 10.4 ins., diam. of

circle of bottom of teeth is 9.4 ins., depth of tooth is 1.15 ins., width of

tooth on pitch line 1.3 ins., clearance -fa ins., angle of obliquity with

the horizontal 27. (Assume faces of rack teeth as planes. Note that this

obliquity is too great for practical working gears.)
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12. Design tooth profiles for a rack and pinion having cycloidal teeth.

Pitch diam. of pinion 12 ins.

Number of teeth 18

Thickness of tooth on pitch line 1.02 ins.

Height of point of tooth on pinion above pitch line. . .0.3 pitch

Depth of root of tootli on pinion-*below pitch line ... .0.4 pitch

Rack tooth height of point and depth of root from

pitch line are equal | in.

Clearance -$ in
f

Diam. of rolling circles 3 ins.

CHAPTER VIII

1. What is meant by the terms "epicyclic gearing," "annular wheel

train"?

The gear pinion on the cone pulley of a lathe has 30 teeth, and drives

a go-tooth wheel on the back-gear shaft. On the back-gear shaft is a 40-

tooth wheel which drives an 8o-tooth wheel on the lathe mandril. How

many revolutions will the mandril make if the cone pulley runs at 300 r.p.m.

and the back-gears are in mesh ?

2. How is the lead screw of a screw-cutting lathe driven? Describe

the means adopted for changing its speed.

3. Describe the back-gearing of a lathe. In the back-gearing of a lathe

one wheel with 84 teeth of half an inch pitch gears with another of 24 teeth
;

find the distance between centres and the number of teeth in the other wheels

if the velocity ratio is 7 : i.

4. What is a compound spur-wheel train? Show how to calculate the

velocity ratio for such a mechanism.

5. The lead screw of a lathe has four threads per inch left handed.

Find the hand and pitch of the thread cut with a 24-tooth wheel on mandril

and 66-tooth wheel on lead screw (no idle wheel).

6. The lead screw of a lathe has 4 threads per in. right-handed; the

change wheels have from 20 to 130 teeth, rising by five. Arrange wheels

to cut (a) a right-hand thread 10 per in., (b) a left-hand thread 6 per in.

7. What is a reverted wheel-train? A reverted epicyclic train consists

of an arm A, an annular wheel B (100 teeth), an idle wheel C (25 teeth),

and a third wheel D (50 teeth). B is fixed. Find how many revolutions

D makes for each revolution of the arm.

8. Sketch, and give numbers of teeth for, an epicyclic reverted wheel-

train having a velocity ratio of i-iooo.

9. A reverted epicyclic train consists of a wheel A having 50 teeth, gear-
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ing with a pinion B having TO teeth, the pinion gears with an annular wheel

C having 70 teeth. Find how many revolutions C makes for each revolu-

tion of the arm to which B is pivoted, A remaining at rest.

10 Two shafts, A and B, 2 ft. apart, are connected by spur-wheels

giving a velocity ratio of 1.75. Shaft A turns the faster and carries a wheel

12 ins. in diameter with 40 teeth. An intermediate shaft C carries a wheel

with 50 teeth. Find the number of teeth in the wheel on the shaft B and the

distance of shaft C from shafts A and B.

11. Two shafts, 40 ins. apart centre to centre, are to have a velocity

ratio of H . Find the diameters of the pitch circles of the necessary wheels

to connect these shafts, using

(a) A train containing a large annular wheel, and

(6) A compound train in which the smallest wheels each have 20 teeth.

12. Parallel shafts A and B have to be connected by spur-gearing with

a velocity ratio of 5 : i and must turn in opposite directions. Wheels with

30, 40, 50, 60, 70, 80, 90 and 100 teeth are available and any number of

intermediate shafts may be used. Find one way of setting up the gear.

13. The wheel-train for a hoist consists of pairs of gears having 20 and 75,

25 and loo, 30 and 90 teeth, the last shaft carrying a i2-in. drum. How many
turns of the 20-tooth wheel will lift load one foot?

14. The earth makes one revolution in 86,400 seconds and circles around

the sun in 31,556,928 seconds. The motion was copied by a wheel train as

follows:

81 81 41 47 13

10 10 10 45 10

Is this correct ? If not, what is the error (in seconds per year) ?

15. An epicyclic speed reduction gear is as shown in the figure. On the

high-speed shaft A is keyed a bevel

wheel B gearing with a wheel C, which is

compound with D. C and D rotate

loosely upon a spindle attached to a sleeve

which encircles the two shafts, and

which therefore is capable of rotating

about the common axis of the two

spindles. C gears with a fixed wheel

,
and D with a wheel F keyed to the

low -speed shaft Z. If the number of

teeth in B, C, D, E and F are 12, 40, 16,

FIG. 3.

46 and 34 respectively, find the revolutions of Z per minute, when A makes

2700 r.p.m., and state whether A and Z rotate in the same or opposite directions.

Paper, Cambridge Uni-NOTE. Question 15 taken from Mechanical Science Tripe,

versity.



372 KINEMATICS OF MACHINES.

1 6. Describe and sketch any two examples of the practical use of cam-

trains in machines with which you are familiar.

17. Design a cam to lift a roller (i in. diameter), one inch, with a

uniform velocity, during one-third of a revolution, to hold it up during one-

third of a revolution, and to allow it to fall, with uniform velocity, during
the remainder of the revolution. Least radius of cam, i^ ins.

18. Design an involute cam to give mill stamp a 6 in. -drop, twice in

each revolution of the cam shaft. Distance between cam and stamp shaft

centres 5 ins. Lowest position of collar is 4 ins. above cam shaft centre.

19. Design a cam which will close the knife of a shearing machine with

uniform acceleration in one-third of a revolution, then allow it to open with

uniform acceleration in one-sixth of a revolution and remain open until the

revolution is complete. The movement of the knife blade is to be 2 ins.

along the centre line of cam, and the lowest position of follower when shears

are open is to be z\ ins. above cam-shaft centre.

20. Design an involute cam for a lift of 12 ins. occurring twice

in each revolution of the cam shaft. The cam must raise the following

with uniform velocity for seven-eighths of a half revolution and then allow it

to fall freely. (See Fig. 4.)

CamS

FIG. 4.

21. Draw the velocity and acceleration diagrams for the follower for the

exhaust valve cam shown in diagram, assuming that cam and follower are

in continuous contact. Follower roller is
j-

in. diameter, (see Fig. 5.)

CHAPTER IX

i. Sketch the arrangement of the wheel-train in an ordinary clock, and

describe some one form of mechanism employed to regulate its rate of move-

ment.
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2. Sketch and describe an example of each of the two classes of ratchet
mechanisms. Explain how the common pump may be regarded as a ratchet
mechanism.

3. What is an escapement? How are escapements classified?

l

FIG. 5.

4. Distinguish between a click and a ratchet, and give an example of

the use of each in some simple mechanism.

5. What are ratchet trains? Explain the difference between a running
and a stationary ratchet.

6. Explain the action of a Yale lock or of a lever lock. How would you
class such locks kinematically ?

7. Describe the action of, and sketch, some form of releasing-ratchet

train employed for working the steam valves of an engine, showing how it

is arranged that release shall occur at some predetermined point in the

stroke.

CHAPTER X

1. Distinguish between the different classes of non-rigid links in mech-

anisms.

2. Two pulleys, 32 ins. and 68 ins. diameter, 12 ft. between centres, are

connected by a crossed belt. Find the length of the belt and the speed the

smaller pulley will run at if the larger makes 200 r.p.m.

3. Pulleys, 32 ins. and 68 ins diameter, 12 ft. between centres, are con-

nected by an open belt. Find, in degrees, the arcs of contact.
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4. Design a [air of stepped core pu'leys f-r a cr v se 1 belt, given.

Speed of driver 200 r.p.m.

Speed of driven shaft 50, 100, 200, 400, 800 r.p.m.

Distance between centres 30 ins.

Diam. of smallest step 4 ins.

5. Draw the Reuleaux chart for a lathe stepped cone and counter-shaft

which runs at 400 r.p.m., given:

Distance between shaft centres 3 ft. o ins.
$

Radii of equal steps 15 ins.

Steps on countershaft 45, 35, 30, 20 ins. diam.

and from your chart find the proper sizes for cones on lathe and probable

speeds of lathe spindle.

6. Make sketches showing the positions in which pulleys should be

placed to transmit power between two shafts at right angles. Indicate in

each case the direction in which you assume the belt to move, and show

how guide-pulleys must be placed in cases where they are necessary.

7. Power is transmitted by means of a belt between two shafts whose

axes are inclined at 45 to one another in plan but are 10 ft. apart. Show

how to find suitable positions for guide-pulleys for the belt.

8. Design a sprocket-wheel with ten teeth for a chain of three-inch,

pitch with one-inch pins.

9. Explain why the velocity ratio of a pair of sprocket wheels connected

by a pitch-chain is not absolutely uniform. Show how to determine the

amount of variation.

10. Make a sketch of the Cochrane rotary engine and show how it is

identical with the turning-block slider-crank chain.

11. Make a diagrammatic sketch of the working parts of the Root

steam-engine. To what class of mechanism does it belong kinematically?

12. Sketch the so-called "differential pump." Explain why it gives a

continuous delivery, and show how it is classed kinematically.

13. Sketch, and describe the working of, the Edwards air pump.

14. Give an example of, and describe briefly, an adjustable fluid escape-

ment as used for a steering or reversing gear.

CHAPTER XI

I. Show that in a pair of screw wheels having axes at right angles in plan,

the angular velocities are inversely as the numbers of teeth and are independent

of the diameters of the wheels.
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2. A shaft making 50 r.p.m. is to drive a second shaft, perpendicular
to it, at 75 r.p.m. by means of skew-gearing having equal wheels 6 ins. in

diameter. Find the angles of the helical teeth and the velocity with which
the teeth slide longitudinally on one another.

3. In screw-wheels distinguish between (a) helical pitch, (b) normal

pitch of teeth, (c) circumferential pitch of teeth, and (d) axial pitch of teeth;

illustrate your answer by sketches.

4. Show by means of velocity diagrams that in a pair of screw wheels the

relative longitudinal sliding of the teeth is a minimum when the wheels have

the same pitch angle.

5. Show that in a pair of screw wheels the teeth profiles (taken in a plane
normal to the helix) should be designed on pitch circles having radii

ra rb
- and

where ra , a, n, 2 ,
are respectively the radii and pitch angles of the screw

wheels.

6. In a pair of hyperboloidal wheels the angular velocities are inversely

proportional to the lengths of the projections of the perpendiculars drawn

from any point on the line of contact to the axes (p. 301). Hence show that

the angular velocities are inversely proportional to the number of teeth on

the wheels.

CHAPTER XII

1. Define Spheric Motion. Give an example of a spheric mechanism.

2. Sketch the mechanism known as Hooke's Joint, and show that it is

really a spheric quadric crank-chain.

3. Show that the axodesof a pair of bevel wheels take the form of a pair

of cones whose common apex is at the intersection of the bevel-wheel axes.

4. A pair of bevel-wheels have pitch-cones the angles of whose vertices

are 60 and 180 respectively. Draw involute tooth profiles for these. (Take

obliquity of line of action as 15. Tooth profiles on larger wheel will be

straight lines.)

5. The velocity ratio between two shafts whose axes intersect at right

angles is to be 2 : 3 and the smaller gear wheel is to have 45 teeth of 2 -in.

pitch. Find the diameters of both wheels and show exactly how the teeth

upon them are designed.

6. Two shafts a and b connected by a universal joint intersect at an angle

of 140. The uniform angular velocity of shaft a is 60 r.p.m. Draw on a

time base a curve of the angular velocity of b marking its maximum and

minimum numerical values.
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7. Find the spinning and rolling velocities at the four points of contact

in a ball thrust bearing like that of Fig. 229, but making XY perpendicular
to OC and having given:

R.P.M. of a 150
Diameter of balls 0.5 in.

Distance OC ...v ^ 1.5
"

Distance AC=BC . . . 0.2 "
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Curve Triangle, Equilateral 185

Curve, Trochoidal 1 86

Curves, Acceleration 51

Curves, Cycloidal 195

Cutting-machines, Bevel-gear 323
"
Cycle

"
Gas-engine, Atkinson's 160

Cycloidal Cam 226

Cycloidal Curves 195

Cycloidal Wheel-teeth 19?

Cylinder, Angular Velocity of, in Oscillating Engine 112

Cylinders, Compensating 132

Cylindric Crank-chain 97

Cylindrical Cam 215, 219

Dashpot 235

Dead-centre : 142

Dead-point 80, 1 72

Degrees of Constraint 1 77

Degrees of Freedom i9> 1 77

Describing Circle 197

Design, Machine 9

Diagrams of Acceleration 44, 49, 5 1

Diagram of Acceleration of Street-car 46

Diagrams of Displacement 38

Diagram of Displacement for Train 43

Diagrams, Polar Acceleration 155, l6o

Diagrams, Polar 146

Diagrams, Polar, Velocity 160

Diagrams of Velocity 38 49

Diagram of Velocity of Street-car 46

Diagram of Velocity for Train * 43

Difference, Phase 64

Differential Bevel-gear 328
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Differential Pulley-block 252
Differential Pump 269

Direct-acting Engine 99, 1 59
'

Direct-acting Steam-engine 99, 1 59, 261

Direction 28, 1 56

Displacement, Diagrams of 38

Displacement, Polar Diagrams of 53

Donkey-pump 121

Double-acting Pump 269

Double-adjustment Plummer-block 140
Double Crank 77

Double Helical Wheels 296
Double Lever.. 80

Double Slider-crank Chain 123, 127, 263

Drill, Archimedean 279

Driving gear of Capstan 211

Duangle 183

Duplex Sceam -pumps 132, 168

Duplication of Mechanism 172, 1 7,1

Eccentric 145- ^53, ^'64

Eccentric-pin of Paddle-wheel 79

Ecoie Polytechnique 347

Edwards' Air-pump 269

Electric Arc-lamps 230

Element, Kinematic . 3

Elements, Expansion of 164

Elements. Forms of 186

Ellipse. 126, 136. 295

Elliptic Chuck 127, 130

Elliptic Trammels 126

Elliptical Wheels 1 76. 191

Elliptical Wheels Inequality of 192

Elliott. Professor 94, no, 117

Engine, Beam 75

Engine, Cochrane , 263

Engine, Corliss 233

Engine, Direct -acting 99, 159. 261

Engine, Root 263

Engine, Steering 241

English Striking-train 239

Envelope 183, 213

Epicyclic Compound Reverted Train 207

Epicyclic Chamber Wheel-trains 267

Epicyclic Bevel-gear 328

Epicyclic Gearing 205
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Epicycloid 197

Equilateral Curve-triangle 185

Error due u> Obliquity of Connecting-rod 100

Escape-wh3el. . c 238

Escapements. 237

Escapements, Adjustable .-. , 237

Escapements, Frictional ; 243

Escapements, Periodic 237

Escapements, Periodical Fluid 273

Escapements, Pressure
$ 273

Escapements, Uniform . 237

Euler 347

Ewing's Extensometer 1 78

Example of Angular Velocities in Ball-bearing 340

Expansion of Elements 164.

Extensometer, Ewing 178

Feathering Paddle-wheel 77
Field of Restraint 182

Firing-pin 258
First Inversion of Slider -crank Chain 99
Float-lever of Paddle wheel 79
Fluid Escapements 274
Fluid Links . . 24, 264
Fluid Links in Screw Mechanisms 282

Fluid Ratchet-train 264

Fly-wheel 173
Follower 215

Follower-pin 220

Force Closure 140, 171, 173, 221

Formation of Screw 276
Forms of Element 186

Forms of Teeth in Screw- and Worm-gearing 293

Fourth Inversion of Slider-crank Chain 1 20

Frame. . . . 72

Free -wheel Bicycle 228

Freedom. 19

Freedom, Degrees of , 177

Friction-brake 232
Friction Gearing 171, 193
Frictional Escapements 243
Frictional Ralchet 228, 27 1

Froude Brake 271

Function, Periodic 66

Fusee 253
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Gas-engine, Atkinson's "
Cycle

"
; . . . . 160

Gas-meter 274
Gauge, Micrometer 20

Gauge, Tide 66

Gear, Belt-shifting 220

Gear, Bevel 31 7

Gear of Bicycle, Driving 208

Gear-cutting Machine, Bilgram 323
Gear-cutting Machine, Rice 325

Gear, Reversing 242, 281

Gear, Steering 280

Gear, Sun-and-planet 209
Gear-trains 191

Gear, Two-speed , 330

Gear, Valve 264

Gear, Winding 252

Gearing, Epicyclic 205

Gearing, Friction 171, 193

Gearing, Ratchet 227

Gearing, Spur 193

Gearing, Wheel 190

Gearing. Worm 285
Globoidal Cam 226

Globoidal Screw 285

Gorge Circle 300
Governor 234, 273
Graham's Escapement 238
Guide-blade 283

Guide-pulleys 255

Gun-lock 257

Gun, Rifled 282

Head, Rudder 281

Hearson, Classification of 354
Helical Pitch 288

Helical Surface 277
Helix 295

Hersey Water-meter 267

Higher Pairs 5, 21, 23, 168, 183

Higher Pairing in Spheric Mechanisms 317

Hindley Worm 298

Hob 298

Hole, Slot, and Plane 178

Hooke's Joint 25, 312

Hooke's Joint, Angular Velocity in 316

Hydraulic Accumulator 269
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Hydraulic Press 260

Hydraulic Transmission 261

Hyperbola . 171

Hyperboloid 294

Hyperboloidal Wheels ':"-. * ^ 298

Hyperboloidai Wheels. Velocity Ratio in;

301

Hypocycloid 197

Identity of Mechanisms, Kinematic 117

Images, Acceleration 155

Image, Velocity 147, 152

Incomplete Chains 172

Incomplete Pairs 171

Indicator, Richards 87

Indicator, Steam-engine 167

Idle Wheels 201, 207

Inequality of Elliptical Wheels 192

Inequality of Lobed Wheels 192

Instant 29

Instantaneous Motion 1 1

Instantaneous Velocity 29

Internal Bevel-wheels , 319

Inversion d
Inversion of a Chain $
Inversions of Quadric Crank-chain , 76

Inversions of Slider-crank Chain 97, 122

Involute 194, 248

Involute Cam 219

Involute Teeth in Bevel-wheels 321

Involute Wheel-teeth 195

Joint, Ball-and-socket 21

Joint, Hooke's 25, 312

Jon val Turbine 283

Journal 171

Kinematic Chain 6

Kinematic Clamp 1 80

Kinematic Classification 346

Kinematic Identity of Mechanisms 117

Kinematic Link 6

Kinematic Slide 1 80

Kisch's Construction 108

Kite , 83

Klein's Construction 108

Knot 27, 35
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Lag 64
Lanz 347
Lathe, Back-gear of 204

Leakage 260

Length of Belt 246
Leonardo da Vinci 130

Leupold 347
Lever 71, 216

Levers, Bell-crank 220

Lever Crank-chain 77

Lever, Double 80

Lever-lock 230
Linear Velocity 27

Links, Fluid 24, 264

Links, Kinematic 6

Links, Non-rigid 24

Links, Tension 244
Lobed Wheels 191

Lobed Wheels, Inequality of , 192

Lock, Gun 257

Lock, Lever 230

Lock, Yale 232

Locking-ratchet 230

Locomotive 82, 174

Locomotive, Connecting-rod of 82

Locomotive, Coupling-rod of 82

Log, Patent 283

Lower Pair 5, 21

Lower Pairing in Spheric Mechanisms 308

MacCord, Professor 302

Machine 1,2

Machine Design 9

Machines, Hydraulic 259

Machine, Screw-making 221

Machines, Simple 2

Mechanical Stoker 283

Machines, Theory of i

Mechanisms, Alteration of 164

Mechanisms, Augmentation of 166

Mechanisms, Classification of 25

Mechanisms, Conic 309

Mechanisms, Duplication of 172

Mechanisms, Kinematic Identity of 117

Mechanisms, Order of ^ 26

Mechanisms, Plane x'
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Mechanisms, Reduced 168

Mechanisms, Running 264

Meter, Gas 274

Meter, Water 274
Micrometer Gauge 20

Mill, Wind X ^ 283

Monge .' 347

Motion, Constrained 3

Motion, Instantaneous 1 1

Motion, Non-plane 4- 17

Motion, Periodic 53, 66, 1 1 3

Motion, Plane 10

Motion, Quick-return 114

Motion, Screw 276

Motion, Simple Harmonic 58

Motion, Spheric 1 8

Motions, Straight-line 84, 87

Non-parallel Axes, Belt-gearing between 254

Non-parallel Axes, Rope-gearing between 254

^Jon-plane Motion 17

Non-rigid Links 24, 244

Non-rigid Links in Ratchet-trains 268

Non-rotative Steam-pumps 168

Normal Pitch 288

Nut 20, 277

Obliquity of Connecting-rod 100

Obliquity of Connecting-rod, Error Due to 100

Oldham's Coupling 127

Open Belt 245

Order of Mechanisms 26

Organs, Pressure 264

Oscillating Engine 112, 262

Oscillating Engine, Angular Velocity of Cylinder in 112

Paddle-wheel, Eccentric-pin of 79

Paddle-wheel, Feathering 77

Paddle-wheel, Float-levers of 79

Paddle-wheel, Radius-rods of 79

Pair 3

Pair, Cam 213

Pair-closure 213, 221

Pair-closure of Chains 175

Pairing, Higher. 23, 168

Pairing, Pressure 260
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Pairs, Incomplete 171

Pallet 239

Pantagraph 84

Pantagraph, Skew 85

Pappenheim Pump 267
Parallel Cranks 80

Parallel-crank Mechanism 174
Parallel-flow Turbine 283

Parallelogram of Velocities 37
Patent Log 283
Pawl 277
Peaucellier Cell 90
Peaucellier Straight-line Motion 90
Pedestal 140
Pendulum 67, 238
Pendulum Pump 1 20

Period of Simple Harmonic Motion 59
Periodic Escapements 237
Periodic Function 66

Periodic Motion 53, 66, 213
Periodical Fluid Escapements 273
Permanent Centre 189

Phase 64

Pin, Firing 258

Pin, Follower 220

Piston, Acceleration of 102

Piston Velocity in Direct-acting Engine 100

Pitch 197, 277

Pitch-angle. 278

Pitch-angle of Screw-wheels 291

Pitch, Axial 288

Pitch-chain 253, 331

Pitch-circle 193

Pitch, Circumferential 288

Pitch, Helical 288

Pitch, Normal 288

Pitch-point 193

Plane Mechanisms 25

Plane Motion 10

Planet Wheel 209

Planing-machine 220

Plate, Wrist 234

Plummer-block, Double Adjustment 140

Point-paths 143

Point, Pitch 193

Point of Restraint 177
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Polar Acceleration Diagrams 53, 146, 155, 160

Polar Velocity Diagrams 53, 146, 160

Pole 147, 154

Polygon, Closed 149
Positive-motion Cam 222, 226

Press, Copying 279

Press, Hydraulic ". . : <*. 260

Pressure Escapements '. 273
Pressure Organs 264
Pressure Pair 24

Pressure Pairing. *; 260

Profile of Wheel-teeth 194

Projectile 282

Propeller, Screw 283

Pulley-block, Differential 252

Pulley-block, Weston Triplex 243

Pulleys, Cone 246

Pulleys, Guide 255

Pump, Centrifugal 264, 285

Pump, Common 268

Pump, Differential 269

Pump, Donkey 121

Pump, Double-acting 269

Pump, Pappenheim 267

Pump, Pendulum 1 20

Pumps, Steam 125

Pump, Worthington 132

Quadric Crank-chain 70

Quadric Crank-chain, Angular Velocities in 73

Quadric Crank-chain, Centrodes of 72

Quadric Crank-chain, Inversions of 76

Quadric Crank- chain, Virtual Centres of 71

Quantities, Scalar 35

Quick-return Motion 114, 1 18

Rack 195

Radial Acceleration ., 34, 156

Radial-flow Turbine 285

Radius-rods of Paddle-wheel 79
Radius Vector 53

Rankine. Professor 90, 302, 348

Rapson's Slide 132

Ratchet, Checking 230. 27 1

Ratchet. Frictiona! 228, 271

Ratchet-gearing 227

Ratchet, Locking 230
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Ratchet, Running .-. 277

Ratchet, Silent 229
Ratchet, Stationary 277
Ratchet-trains containing Non-rigid Links 268

R atchet-train, Fluid 264.

Ratchet-wheel 277

Reduccd Centrodes ... 170
Reduced Mechanisms 168

Reduction of Chains 168

Relative Displacement of Bodies having Simple Harmonic Motion 64
Relative Motion of Bodies having Simple Harmonic Motion 63
Relative Spinning in Ball-bearings ... 337

Releasing-ratchet 230, 27 1

Renold Chain 254

Restraint, Field of 182

Restraint, Point of 177

Restraining Body 181

Resultant 36
Resultant Acceleration 37

Reuleaux, Classification of , 3 5 *

Reuleaux, Professor 70, 167, 170. 183, 186, 237, 247, 262 264. 275. 348

Reversing-gear 242, 28 1

Reversing-shaft 281

Reverted Compound Epicyclic Train 207

Reverted Train 204

Rice Gear-cutting Machine 325

Richards Indicator 87

Rifled Gun 282

Roberts Straight-line Motion 90
Roberval Balance 86

Roller- bearings 331

Rollers, Conical 331

Rolling 1 *8 333

Root B'ower 267

Root Engine 263

Ropes ,

'

24, 244

Rope-gearing between Non- parallel Axes 254

Rope-gearing, Velocity Ratio in 251

Rotating Cam 275

Rotation, Virtual 12-

Rudder 241

Rudder Head. . 281

Ruled Surface '2

Running Mechanisms 264

Running ratchet 227
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Safety-valve Spring 259

Scalar Quantities 35

Scale of Diagrams 48

Scott Russell's Straight-line Motion 136

Screw 20

Screw Chain, Crossed 281

Screw, Formation of
'

: : Ji 276

Screw-gearing, Forms of Teeth in . . . .' 293

Screw-making Machine 221

Screw Mechanisms containing Fluid Links 282

Screw Motion .*-. 276

Screw Pair 22

Screw-propeller -. 283

Screw Surfaces 276

Screw-thread 277, 278

Screw-threads, Conical 284

Screw-threads, Globoidal 285

Screw-wheels 285

Screw-wheels, Pitch-angle of 291

Screw-wheels, Velocity Ratio of 291

Second Inversion of Slider-crank Chain 112

Self-centring Chuck 285

Sense 28

Setting Out Bevel-wheel Teeth 322

Shaft, Reversing 281

Shaping Machine 114

Shifter, Belt 220

Shifting-gear, Belt 220

Silent Ratchet 229

Simple Chain 7

Simple Harmonic Motion 58

Simple Harmonic Motion, Acceleration in 61

Simple Harmonic Motion, Amplitude of 58

Simple Harmonic Motion, Composition of 67

Simple Harmonic Motion, Period of 59

Simple Harmonic Motion, Relative Motion of Bodies having 63

Simple Harmonic Motion, Velocity in. . . .* 60

Simple Machines 2

Sine Curve 66

vSkew Bevel-wheels 302

Skew Pantagraph 85

Slide Chain, Crossed 131

Slide, Kinematic 180

Slider Crank 159

Slider-crank, Crossed Turning * 123

Slider-crank, Crossed Turning-block 123
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Slider-crank, Crossed Swinging 123

Slider-crank, Crossed Swinging-block 123

Slider-crank, Turning-block 263

Slider-crank, Swinging 120, 263

Slider-crank, Swinging-block 113, 262

Slider-crank Chain 97, 212

Slider-crank Chain, Centrodes of 97
Slider-crank Chain, Crossed 122

Slider-crank Chain, Double 123, 263
Slider-crank Chain, Inversions of 97, 122

Slider-crank Chain, Virtual Centres of 97

Sliding 1 8

Sliding Cam 215, 219

Sliding Pairs, Chain containing only 138

Snail 241

Speed 28

Spheric Mechanisms 25

Spheric Mechanisms having Higher Pairing 317

Spheric Mechanisms having Lower Pairing 308

Spheric Motion. 18, 304

Spheric Triangle 305

Spinning 18, 333, 342

Spiral of Archimedes 57, 216, 327

Spiral Bevel-wheels 327

Springs 24, 226, 256

Spring Buffer 259

Spring Safety-valve 259

Sprocket-wheel 229. 253, 331

vSpur- gearing. 193

Spur-wheels 193

Stamp-mill 214

Stationary Ratchet 277

Steam-engine 273

Steam-engine, Brotherhood 173

Steam-engine, Direct- acting 20, 99, 159, 261

Steam-engine Indicator 167

Steam-engine, Oscillating 262

Steam engine, Three cylinder . 173

Steam-pumps '25

Steam-pumps, Duplex 132. 168

Steam-pumps, Non-iotative 168

Steer ing-engine 241

Steering-gear 132, 134. 280

Steering-wheel 241

Stoker, Mechanical 283

Straight-line Motions 84, 87, 136. 167
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Straight-line Motion, Bricard 94

Straight-line Motion, Cartwright's 212

Straight-line Motion, Peaucellier 90

Straight-line Motion, Roberts 90

Straight-line Motion, Scott Russell's 136

Straight-line Motion, Tchebicheff . 90

Straight-line Motion, Watt f! 88

Strap-brake 272

Street-car, Diagram of Acceleration of 46

Street-car, Diagram of Displacement of ^ 46

Street-car, Diagram of Velocity of 46

Striking-train, English 239

Structure 2, 70

Sub-normal 52

Sun-and-planet Gear 209

Surface, Helical 277

Surface, Ruled 12

Surface, Screw 276

Swash-plate 226

Swinging-block Slider-crank 113, 262

Swinging Slider-crank Chain 1 20, 263

Sylvester, Professor. ." 83, 85

Tangent, Common 288

Tangential Acceleration 156

Tchebicheff Straight-line Motion 90
Teeth of Bevel-wheels 320

Teeth, Cycloidal 197

Teeth, Involute 195

Tension -links 244

Tension Pair 24

Test-piece 178

Theory of Machines \ I

Thickness of Belt 251

Third Inversion of Slider-crank Chain 118

Thread, Screw 277, 278

Three-cylinder Steam-engine 173

Thrust-bearing 331, 334

Tide-gauge 66

Tiller 133, J 35

Train, Cam 213

Train, Chamber Crank 261

Train, Diagram of Displacement for 43

Train, Diagram of Velocity for '. 43

Trains, Gear 191

Train, Reverted 204
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Trammels, Elliptic 1 26

Transformed Centrodes 1 70

Transmission, Belt 255

Transmission, Compressed-air 261

Transmission, Hydraulic 261

Tredgold 322

Triangle, Spheric . . 305

Triangle, Vector 149

Triangular Connecting-rod 175

Triangle of Velocities 37, 149

Trigger 258

Trochoidal Curve 186

Tumbler 230

Turbine 264

Turbine, Jonval 283

Turbine, Parallel-flow 283

Turbine, Radial-flow 285

Turning-block, Slider-crank 263

Turning Pairs 22

Twist Axis 279, 294

Two-speed Gear 330

Uniform Acceleration 31, 49, 2 1 7

Uniform Escapements 237

Uniform Velocity 28, 217

Uniform Velocity Ratio 188

Universal Joint 312

Universal Joint, Angular Velocities in 316

Unwin, Professor 200

Valve-gear 264

Valve-gear, Bremme's 143, 151

Valve-gear, Corliss 233

Variable Fluid Escapements 274

Variable Velocity 29

Variable Velocity Ratio in Belt-gearing 246

Vector 28, 35

Vector Addition 36

Vector, Radius 53

Vector Triangle 149

Velocities, Composition of 35

Velocities, Parallelogram of 37

Velocities, Triangle of. 37, 149

Velocity f
27, 141, 145

Velocity and Acceleration, Polar Diagrams of 146
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Velocity, Angular 27, 32

Velocity, Average 29

Velocity of Cable-car 53

Velocity of Crank-pin 102

Velocity of Cross-head 99

Velocity, Diagrams of > 38, 49

Velocity Image ? 147, 152

Velocity, Instantaneous 29

Velocity, Linear 27

Velocity, Magnitude of ^ 33

Velocity, Polar Diagrams of 53

Velocity Ratio in Belt-gearing 244

Velocity Ratio in Bevel-gear 329

Velocity Ratio in Bevel-wheels 319

Velocity Ratio in Cam-trains 222

Velocity Ratio in Chain-gearing. . 251

Velocity Ratio in Hyperboloidal Wheels 301

Velocity Ratio in Rope-gearing 251

Velocity Ratio in Screw-wheels 291

Velocity Ratio, Uniform 188

Velocity in Simple Harmonic Motion 60

Velocity, Uniform. . . *. 28, 217

Velocity, Variable 29

Verge 238
Virtual Axis 12, 305
Virtual Centre 12

Virtual Centres in Quadric Crank-chain 71

Virtual Centres of Slider-crank Chain 99
Virtual Rotation 12

Water-meter 274

Water-meter, Hersey 267

Water-wheel 264

Watt, James 87

Watt Straight-line Motions 88

Weighing-machines 171

Weston Triplex Pulley-block 243

Whitworth Quick-return Motion 118

Wheel, Annular 203, 209

Wheels, Bevel 306, 318

Wheels, Double Helical 296

Wheels, Elliptical 176, 191

Wheel, Escape 238

Wheel-gearing 190

Wheels, Hyperboloidal 298

Wheels, Idle 201
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Wheels, Lobed 191

Wheel, Planet 209

Wheel, Ratchet 277

Wheels, Screw 285

Wheels, Skew-bevel 302

Wheel, Sprocket 229, 253, 331

Wheels, Spur 193

Wheel, Steering 241

Wheel-trains 191

Wheel-trains, Chamber 264
Wheel-teeth 191

Wheel-teeth, Cycloidal '. 197

Wheel-teeth, Involute 195

Wheel-teeth, Profiles of 194

Wheel-trains, Compound 201

Wheel, Water 264

Wheel, Worm 286, 290, 297

Willis, Professor 302, 346
Windmill 283

Winding-gear 252

Worm 290, 297

Worm-gearing 285

Worm-gearing, Forms of Teeth in 293

Worm, Hindley 298

Worm-wheels 286, 290, 297

Worthington Pump 132

Wrist-plate 234

Yale Lock 232
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